In cooperation with the Iranian Nuclear Society

Monte Carlo Simulation of NE213 Response to 241Am-Be Neutrons Using the PTRAC Card of the MCNPX Code and the Light Transport Code PHOTRACK

Document Type : Research Paper

Authors

Abstract
The response of an NE213 scintillator to Am-Be neutrons, in which the neutron and neutron-induced charged particles transports have been undertaken, has been simulated with the use of MCNPX’ PTRAC card whilst the scintillation light transport has been performed with Monte Carlo light transport code, PHOTRACK. The scintillation light output for different neutron-induced charged particles has been calculated using the validated light output curves. The experimental data on the response of the NE213 scintillator exposed to Am-Be source has been obtained with a neutron-gamma discrimination circuitry using zero-crossing method. The simulation data represent a good agreement with the corresponding experimental results.

Highlights

  1. H. Klein, F. D. Brooks, Scintillation detectors for fast neutrons, Proceedings of the Conference FNDA, International Workshop on Fast Neutron Detectors, University of Cape Town, South Africa, (April 2006) 3–6.

     

  2. E. Bayat, N. Divani-Vais, M. M. Firoozabadi, N. Ghal-Eh, A comparative study on neutron-gamma discrimination with NE213 and UGLLT scintillators using zero-crossing method, Radiation Physics and Chemistry, 81 (2012) 217–220.

 

  1. G. F. Knoll, Radiation Detection and Measurements, Third ed. Wiley, New York (2000).

 

  1. K. Weise, Mathematical foundation of an analytical approach to Bayesian-statistical Monte Carlo spectrum unfolding, PTB Report PTB-N-24, Braunschweig (1995).

 

  1. Klein, Horst, Sonja Neumann, Neutron and photon spectrometry with liquid scintillation detectors in mixed fields, Nucl. Instrum. Meth. A476 (2002) 132-142.

 

  1. S. Avdic, S. A. Pozzi, V. Protopopescu, Detector response unfolding using artificial neural networks, Nucl. Instrum. Meth., A 565 (2006) 742–752.

 

  1. A. Sharghi Ido, M. R. Bonyadi, G. R. Etaati, M. Shahriari, Unfolding the neutron spectrum of a NE213 scintillator using artificial neural networks, Appl. Rad. Isotop., 67 (2009) 1912–1918.

 

  1. J. K. Dickens, SCINFUL: A Monte Carlo based computer program to determine a scintillator full energy response to neutron, Report ORNL-6463, Oak Ridge (1988).

 

  1. R. E. Textor, V. V. Verbinski, O5S: a Monte Carlo code for calculating the pulse-height distributions due to mono-energetic neutrons on organic scintillators, Oak Ridge National Laboratory, ORNL-4160 (1968).

 

  1. A. Borio di Tigliole, A. Cesana, R. Dolfini, A. Ferrari, G. L. Raselli, P. Sala, M. Terrani,  FLUKA simulations for low-energy neutron interactions and experimental validation, Nucl. Instrum. Meth., A 469 (2001) 347–353.

 

  1. K. Schweda, D. Schmidt, Improved response function calculations for scintillation detectors using an extended version of the MCNP code, Nucl. Instrum. Meth., A 476 (2002) 155–159.

 

  1. M. Gohil, K. Banerjee, S. Bhattacharya, C. Bhattacharya, S. Kundu, T. K. Rana, G. Mukherjee, J. K. Meena, R. Pandey, H. Pai, T. K. Ghosh, A. Dey, S. Mukhopadhyay, D. Pandit, S. Pal, S. R. Banerjee, T. Bandhopadhyay, Measurement and simulation of neutron response function of organic liquid scintillator detector, Nucl. Instrum. Meth., A 664 (2012) 304–309.

  2. J. S. Hendricks, G. W. McKinney, L. S. Waters, F. X. Gallmeier, MCNPX 2/6/0 Extensions, Los Alamos National Laboratory (2008).

 

  1. G. R. Etaati, N. Ghal-Eh, Light transport feature for SCINFUL, Appl. Radiat. Isot., 66 (2008) 395–400.

 

  1. M. Tajik, N. Ghal-Eh, G. R. Etaati, H. Afarideh, Modelling NE213 scintillator response to neutrons using an MCNPX-PHOTRACK hybrid code, Nucl. Instr. Meth., A704 (2013) 104–110.

 

  1. C. Bähr, R. Böttger, H. Klein, P. von Neumann-Cosel, A. Richter, D. Schmidt, K. Schweda, S. Strauch, Calculation of neutron response functions in complex geometries with the MCNP code, Nucl. Instrum. Meth., A 411 (1998) 430-436.

 

  1. International Standards Organization. Reference neutron radiations-Part 1: Characteristics and methods of production. Geneva, Switzerland: International Organization for Standardization; ISO-8529-1 (2001).

 

  1. V.­ V. Verbinski, W. R. Burrus, T. A. Love, W. Zobel, N. W. Hill, Calibration of an organic scintillator for neutron spectrometer, Nucl. Instrum. Meth., 65 (1968) 8-25.

 

  1. S. Green, M. C. Scott, R. Koohi-Fayegh, A user guide for the NPL NE213 neutron spectroscopy system, School of Physics and Astronomy, The University of Birmingham, UK (1991).

 

  1. R. A. Cecil, B. D. Anderson, R. Madey, Improved predictions of neutron to about 300 MeV, Nucl. Instrum. Meth., 161 (1979) 439-447.

 

  1. N. Ghal-Eh, M. C. Scott, R. Koohi-Fayegh, M. F. Rahimi, A photon transport model code for use in scintillation detectors, Nucl. Instrum. Meth., A 516 (2004) 116-121.

 

  1. N. Ghal-Eh and R. Koohi-Fayegh, Light collection behaviour of scintillators with different surface coverings, Radiat. Meas., 41 (2006) 289-294.

 

  1. H. H. Knox, T. G. Miller, A technique for determining bias settings for organic scintillators, Nucl. Instrum. Meth., 101 (1972) 519–525.

 

Keywords


  1. H. Klein, F. D. Brooks, Scintillation detectors for fast neutrons, Proceedings of the Conference FNDA, International Workshop on Fast Neutron Detectors, University of Cape Town, South Africa, (April 2006) 3–6.

     

  2. E. Bayat, N. Divani-Vais, M. M. Firoozabadi, N. Ghal-Eh, A comparative study on neutron-gamma discrimination with NE213 and UGLLT scintillators using zero-crossing method, Radiation Physics and Chemistry, 81 (2012) 217–220.

 

  1. G. F. Knoll, Radiation Detection and Measurements, Third ed. Wiley, New York (2000).

 

  1. K. Weise, Mathematical foundation of an analytical approach to Bayesian-statistical Monte Carlo spectrum unfolding, PTB Report PTB-N-24, Braunschweig (1995).

 

  1. Klein, Horst, Sonja Neumann, Neutron and photon spectrometry with liquid scintillation detectors in mixed fields, Nucl. Instrum. Meth. A476 (2002) 132-142.

 

  1. S. Avdic, S. A. Pozzi, V. Protopopescu, Detector response unfolding using artificial neural networks, Nucl. Instrum. Meth., A 565 (2006) 742–752.

 

  1. A. Sharghi Ido, M. R. Bonyadi, G. R. Etaati, M. Shahriari, Unfolding the neutron spectrum of a NE213 scintillator using artificial neural networks, Appl. Rad. Isotop., 67 (2009) 1912–1918.

 

  1. J. K. Dickens, SCINFUL: A Monte Carlo based computer program to determine a scintillator full energy response to neutron, Report ORNL-6463, Oak Ridge (1988).

 

  1. R. E. Textor, V. V. Verbinski, O5S: a Monte Carlo code for calculating the pulse-height distributions due to mono-energetic neutrons on organic scintillators, Oak Ridge National Laboratory, ORNL-4160 (1968).

 

  1. A. Borio di Tigliole, A. Cesana, R. Dolfini, A. Ferrari, G. L. Raselli, P. Sala, M. Terrani,  FLUKA simulations for low-energy neutron interactions and experimental validation, Nucl. Instrum. Meth., A 469 (2001) 347–353.

 

  1. K. Schweda, D. Schmidt, Improved response function calculations for scintillation detectors using an extended version of the MCNP code, Nucl. Instrum. Meth., A 476 (2002) 155–159.

 

  1. M. Gohil, K. Banerjee, S. Bhattacharya, C. Bhattacharya, S. Kundu, T. K. Rana, G. Mukherjee, J. K. Meena, R. Pandey, H. Pai, T. K. Ghosh, A. Dey, S. Mukhopadhyay, D. Pandit, S. Pal, S. R. Banerjee, T. Bandhopadhyay, Measurement and simulation of neutron response function of organic liquid scintillator detector, Nucl. Instrum. Meth., A 664 (2012) 304–309.

  2. J. S. Hendricks, G. W. McKinney, L. S. Waters, F. X. Gallmeier, MCNPX 2/6/0 Extensions, Los Alamos National Laboratory (2008).

 

  1. G. R. Etaati, N. Ghal-Eh, Light transport feature for SCINFUL, Appl. Radiat. Isot., 66 (2008) 395–400.

 

  1. M. Tajik, N. Ghal-Eh, G. R. Etaati, H. Afarideh, Modelling NE213 scintillator response to neutrons using an MCNPX-PHOTRACK hybrid code, Nucl. Instr. Meth., A704 (2013) 104–110.

 

  1. C. Bähr, R. Böttger, H. Klein, P. von Neumann-Cosel, A. Richter, D. Schmidt, K. Schweda, S. Strauch, Calculation of neutron response functions in complex geometries with the MCNP code, Nucl. Instrum. Meth., A 411 (1998) 430-436.

 

  1. International Standards Organization. Reference neutron radiations-Part 1: Characteristics and methods of production. Geneva, Switzerland: International Organization for Standardization; ISO-8529-1 (2001).

 

  1. V.­ V. Verbinski, W. R. Burrus, T. A. Love, W. Zobel, N. W. Hill, Calibration of an organic scintillator for neutron spectrometer, Nucl. Instrum. Meth., 65 (1968) 8-25.

 

  1. S. Green, M. C. Scott, R. Koohi-Fayegh, A user guide for the NPL NE213 neutron spectroscopy system, School of Physics and Astronomy, The University of Birmingham, UK (1991).

 

  1. R. A. Cecil, B. D. Anderson, R. Madey, Improved predictions of neutron to about 300 MeV, Nucl. Instrum. Meth., 161 (1979) 439-447.

 

  1. N. Ghal-Eh, M. C. Scott, R. Koohi-Fayegh, M. F. Rahimi, A photon transport model code for use in scintillation detectors, Nucl. Instrum. Meth., A 516 (2004) 116-121.

 

  1. N. Ghal-Eh and R. Koohi-Fayegh, Light collection behaviour of scintillators with different surface coverings, Radiat. Meas., 41 (2006) 289-294.

 

  1. H. H. Knox, T. G. Miller, A technique for determining bias settings for organic scintillators, Nucl. Instrum. Meth., 101 (1972) 519–525.