In cooperation with the Iranian Nuclear Society

Document Type : Scientific Note

Authors

Abstract

Electromagnetic Isotopes Separator (EMIS) has been installed in Karaj since 1991 in order to separate isotopes of a wide range of elements. Iron is successfully separated. Iron element has four stable isotopes, 58Fe, 57Fe, 56Fe and 54Fe. The natural abundance of 54Fe is 5.8%. The 54Fe isotope is used for production of radioisotope 55Fe which in turn is used as an electron capture detector and in X-ray fluorescence. The copper pockets and graphite front plate were designed and fabricated for separating and collecting Fe isotopes. After the selection and preparation of charge material, the electrical parameter of ion source and electromagnet were recognized. The mass spectra of iron isotope were recorded. The deposited 54Fe isotope was extracted from copper pocket and purified by electrodeposition, solvent extraction and purification methods. Chemical and enrichment analyses of 54Fe isotope were made by ICP-AES and TIMS, respectively. The formation of 54Fe2O3 was confirmed by the X-ray diffraction.
 

Highlights

  1. A.J. Novinrooz, Separation of Thallium Isotope (203Tl) by 180˚ Electromagnetic Isotope Separator, J of Nuclear Sci. and Tech, AEOI, No. 28 (1382).

 2.   S.M. Mohati, Enrichment of 58Ni by electromagnetic isotope separator, 5th International conference on isotopes, Brussels (Belgium), April 25-29 (2005).

  1. A.L. Compare, W.L. Griffith, The US Calutron Program for Uranium Enrichment: History, Technology, Operation and production, ORNL-5928 (1991).

 4.   J. Koch, Electromagnetic Isotope Separators and Application of Electromagnetically Enriched Isotopes (1958).

 5.   C.W. Sheridan, H.R. Gwinn, L.O. Love, Preparation of Charge Materials for ORNL Electromagnetic Isotopes separator, ORNL- 3301 (Aug 8, 1962).

 6.   P. Sarabadani, B. Zeynali, J. Gagrosi, H. Nourkojouri, M. Pour Amin, A. Satari, Chemical recovery and purification of 203Tl stable isotope enriched by using an electromagnetic isotope separator, Journal of  Labeled Compounds and Radiopharmaceuticals, 50 (2007) 5-6.

 7.   S.M. Qaim, R. Weinreich, H. Ollige, Production of 201Tl and 203Pb via proton induced nuclear reactions on natural thallium, Int. J. Appl. Rad. Isotopes, 30, 85 (1979).

 8.   M. Todorović, P. Đurđević, V. Antonijević, Optical methods for instrumental analysis, Faculty of Chemistry, Belgrade (1997).

 9.   D.C. Harris, Quantitative chemical analysis, W.H. Freeman and Co., New York (1996).

 10.H. Tamura, K. Goto, T.A. Kao Yotsuyanagi, M. Nagayama, Spectrophotometric determination of iron(II) with 1,10 phenanthroline in the presence of large amounts of iron(III), Talanta, 21 (1974) 314-318.

 11.D. Lazić, B. Škundrić, J.P. Škundri, S. Sladojević, L. Vasiljević, D. Blagojević, Z. Obrenović, Stability of tris -1,10 Phenantroline iron (II) complex in different composites, Chemical Industry & Chemical Engineering Quarterly, 16 (2010) 193-198.

 12.D.C. Haris, Determination of Iron with 1,10 Phenanthroline in: Quantitative Chemical Analysis, 6th ed., W.H. Freeman & Company, New York (2003) 258-261, 407-422, 453, 461-476, 707-709.

Keywords

  1. A.J. Novinrooz, Separation of Thallium Isotope (203Tl) by 180˚ Electromagnetic Isotope Separator, J of Nuclear Sci. and Tech, AEOI, No. 28 (1382).

 2.   S.M. Mohati, Enrichment of 58Ni by electromagnetic isotope separator, 5th International conference on isotopes, Brussels (Belgium), April 25-29 (2005).

  1. A.L. Compare, W.L. Griffith, The US Calutron Program for Uranium Enrichment: History, Technology, Operation and production, ORNL-5928 (1991).

 4.   J. Koch, Electromagnetic Isotope Separators and Application of Electromagnetically Enriched Isotopes (1958).

 5.   C.W. Sheridan, H.R. Gwinn, L.O. Love, Preparation of Charge Materials for ORNL Electromagnetic Isotopes separator, ORNL- 3301 (Aug 8, 1962).

 6.   P. Sarabadani, B. Zeynali, J. Gagrosi, H. Nourkojouri, M. Pour Amin, A. Satari, Chemical recovery and purification of 203Tl stable isotope enriched by using an electromagnetic isotope separator, Journal of  Labeled Compounds and Radiopharmaceuticals, 50 (2007) 5-6.

 7.   S.M. Qaim, R. Weinreich, H. Ollige, Production of 201Tl and 203Pb via proton induced nuclear reactions on natural thallium, Int. J. Appl. Rad. Isotopes, 30, 85 (1979).

 8.   M. Todorović, P. Đurđević, V. Antonijević, Optical methods for instrumental analysis, Faculty of Chemistry, Belgrade (1997).

 9.   D.C. Harris, Quantitative chemical analysis, W.H. Freeman and Co., New York (1996).

 10.H. Tamura, K. Goto, T.A. Kao Yotsuyanagi, M. Nagayama, Spectrophotometric determination of iron(II) with 1,10 phenanthroline in the presence of large amounts of iron(III), Talanta, 21 (1974) 314-318.

 11.D. Lazić, B. Škundrić, J.P. Škundri, S. Sladojević, L. Vasiljević, D. Blagojević, Z. Obrenović, Stability of tris -1,10 Phenantroline iron (II) complex in different composites, Chemical Industry & Chemical Engineering Quarterly, 16 (2010) 193-198.

 12.D.C. Haris, Determination of Iron with 1,10 Phenanthroline in: Quantitative Chemical Analysis, 6th ed., W.H. Freeman & Company, New York (2003) 258-261, 407-422, 453, 461-476, 707-709.