In cooperation with the Iranian Nuclear Society

Effect of Cold Rolling Process on Mechanical, Corrosion and Hydride Orientation Properties in Zr-1%Nb Alloys

Document Type : Research Paper

Authors

Abstract
A radially-oriented hydride (RH) has been known to deteriorate the final properties of fuel claddings. One of the most effective factors on formation of these hydrides is cold working process. In this work, we were concerned with two different rolling processes to find their effects on mechanical and corrosion properties, as well as, on the hydride orientation of the final tubes. The first process used was our conventional method with six different rolling passes and the other was just involved with four passes. All the microscopic, hydride orientation, mechanical and corrosion behaviors of two samples were examined. The experimental practices showed better results of newly designed cold working process in comparison with our conventional method.

Highlights

  1. B. Cox, P. Rudling, Hydriding mechanisms and impact on fuel performance, Advanced Nuclear Technology, Uppsala Science Park, SWEDEN.

 2.   M. R. Louthan, R. P. Marshall, Control of hydride orientation in Zircaloy, J. Nuclear Material, 9 (1963) 170–184.

 3.   S. K. Yagnik, R-CKuo, Y. R. Rashid, A. J. Machiels, R. L. Yang, Effect of hydrides on the mechanical properties of Zircaloy-4, Proc. 2004 Int. Meeting on LWR Fuel Performance, Orland, Florida, Sept. 19–22, 2004, 1089, (2004) 191-199.

 4.   J. Bai, C. Prioul, D. Francois, Hydride embrittlement in Zircaloy-plate: part 1. Influence of microstructure on the hydride embrittlement in Zircaloy-4 at 20C and 350C, Metall. Trans. A, 25A (1994) 1185-1197.

 5.   S. Shimada, E. Etoh, H. Hayashi, Y. Tukuta, A metallographic and fractographic study of outside-in cracking caused by power ramp tests, J. Nuclear Material, 327 (2004) 97–113.

 6.   F. Nagase, T. Fuketa, Influence of hydride re-orientation on BWR cladding rupture under accidental conditions, J. Nuclear Science Tech., 41 [12] (2004) 1211–1217.

 7.   D. Hardie, M. W. Shanahan, Stress reorientation of hydrides in zirconium-2.5% niobium, J. Nuclear Material, 55 (1975) 1–13.

 8.   G. W. Parry, Stress reorientation of hydrides in cold-worked Zirconium-2.5% Niobium pressure tubes, AECL-2624, 1 (1996).

 9.   R. P. Marshall, Influence of fabrication history on stress-oriented hydrides in Zircaloy tubing, J. Nuclear Material, 24 (1967) 34–48.

 10.J. J. Kearns, C. R. Woods, Effect of texture, grain size, and cold work on the precipitation of oriented hydrides in Zircaloy tubing and plate, J. Nuclear Material, 20 (1966) 241–261.

 11.M. Leger, A. Donner, The effect of stress on orientation of hydrides in zirconium alloy pressure tube materials, Can. Metall. Q., 24[3] (1985) 235–243.

12.J. B. Bai, C. Prioul, D. Francois, Effect of microstructure factors and cold work on the hydride precipitation in Zircaloy-4 sheet, J. Adv. Science, 3[4] (1991) 188.

 13.Y. Mishima, T. Okubo, Effect of thermal cycling on the stress orientation and circumferential ductility in Zircaloy-2, Can. Metall. Q., 11[1] (1972) 157–164.

14.R. P. Marshall, Control of hydride orientation in Zircaloy by fabrication practice, J. Nuclear Material, 24 (1967) 49–59.

 15.P. Rudling and G. Wikmark, A unified model of Zircaloy BWR corrosion and hydriding mechanisms, J. Nuclear Material, 265 (1999) 44-59.

Keywords


  1. B. Cox, P. Rudling, Hydriding mechanisms and impact on fuel performance, Advanced Nuclear Technology, Uppsala Science Park, SWEDEN.

 2.   M. R. Louthan, R. P. Marshall, Control of hydride orientation in Zircaloy, J. Nuclear Material, 9 (1963) 170–184.

 3.   S. K. Yagnik, R-CKuo, Y. R. Rashid, A. J. Machiels, R. L. Yang, Effect of hydrides on the mechanical properties of Zircaloy-4, Proc. 2004 Int. Meeting on LWR Fuel Performance, Orland, Florida, Sept. 19–22, 2004, 1089, (2004) 191-199.

 4.   J. Bai, C. Prioul, D. Francois, Hydride embrittlement in Zircaloy-plate: part 1. Influence of microstructure on the hydride embrittlement in Zircaloy-4 at 20C and 350C, Metall. Trans. A, 25A (1994) 1185-1197.

 5.   S. Shimada, E. Etoh, H. Hayashi, Y. Tukuta, A metallographic and fractographic study of outside-in cracking caused by power ramp tests, J. Nuclear Material, 327 (2004) 97–113.

 6.   F. Nagase, T. Fuketa, Influence of hydride re-orientation on BWR cladding rupture under accidental conditions, J. Nuclear Science Tech., 41 [12] (2004) 1211–1217.

 7.   D. Hardie, M. W. Shanahan, Stress reorientation of hydrides in zirconium-2.5% niobium, J. Nuclear Material, 55 (1975) 1–13.

 8.   G. W. Parry, Stress reorientation of hydrides in cold-worked Zirconium-2.5% Niobium pressure tubes, AECL-2624, 1 (1996).

 9.   R. P. Marshall, Influence of fabrication history on stress-oriented hydrides in Zircaloy tubing, J. Nuclear Material, 24 (1967) 34–48.

 10.J. J. Kearns, C. R. Woods, Effect of texture, grain size, and cold work on the precipitation of oriented hydrides in Zircaloy tubing and plate, J. Nuclear Material, 20 (1966) 241–261.

 11.M. Leger, A. Donner, The effect of stress on orientation of hydrides in zirconium alloy pressure tube materials, Can. Metall. Q., 24[3] (1985) 235–243.

12.J. B. Bai, C. Prioul, D. Francois, Effect of microstructure factors and cold work on the hydride precipitation in Zircaloy-4 sheet, J. Adv. Science, 3[4] (1991) 188.

 13.Y. Mishima, T. Okubo, Effect of thermal cycling on the stress orientation and circumferential ductility in Zircaloy-2, Can. Metall. Q., 11[1] (1972) 157–164.

14.R. P. Marshall, Control of hydride orientation in Zircaloy by fabrication practice, J. Nuclear Material, 24 (1967) 49–59.

 15.P. Rudling and G. Wikmark, A unified model of Zircaloy BWR corrosion and hydriding mechanisms, J. Nuclear Material, 265 (1999) 44-59.