Document Type : Research Paper
Authors
Highlights
1. R. Avila, A. Perez, Mesh free methods for partial differential equations IV-A pressure correction approach coupled with the MLPG method for solution of the Navier Stokes Equations, Springer (2008) 19-33.
2. H. Ding, C. Shu, K. S. Yeo, D. Xu, Development of least square-based two-dimensional finite-difference and their application to simulate natural convection in a cavity, Computers and Fluids, 33 (2004) 137-154.
3. G. R. Liu, M. B. Liu, Smoothed Particle Hydrodynamics, a mesh free practical method, World Scientific Publishing, Singapore (2003).
4. T. Belytschko, Y. Y. Lu, L. Gu, Element-free Galerkin methods, Int. Journal of Numerical Methods in Engineering, 37 (1994) 229-256.
5. W. Liu, S. Jun, Y. Zhang, Reproducing kernel particle methods, International Journal for Numerical Methods in Fluids, 20 (1995) 1081-1106.
6. C. Armando Duarte, J. Tinsley Oden, An h-p adaptive method using clouds, Computer methods in applied mechanics and engineering, 139 (1996) 237-262.
7. I. Babuska, B. Uday, E. O. John, Generalized Finite Element Methods: Main Ideas, Results, and Perspective, International Journal of Computational Methods, 1 (1) (2004) 67-103.
8. I. Babuska, J. M. Melenk, The Partition of Unity Method, Int. J. Num. Meth. Eng. 40 (1997) 727-758.
9. G. R. Liu, Y. T. Gu, A point interpolation method for two dimensional solids, Int. J. Numer. Methods Eng. 50 (2001) 937-951.
10. G. R. Liu, Y. T. Gu, An introduction to Mesh free methods and their programming, Springer (2005).
11. G. R. Liu, Mesh free methods, Moving Beyond the finite element, CRC Press (2003).
12. B. Rokrok, H. Minuchehr, A. Zolfaghari, Appliaction of Radial Point Interpolation Method to Neutron Diffusion field, Trends in applied sciences research, 7(1) (2012) 18-31.
13.T. B. Fowler, D. R. Vondy, G. W. Cunningham, Nuclear Reactor Core Analysis Code: CITATION, ORNL-TM-2496, Rev. 2, with Supplements 1, 2, and 3 (1971).
14. N. Dyn, D. Levin, S. Rippa, Numerical procedures for surface fitting of scattered data by radial functions, SIAM J. Sci. Stat. Comput. 7 (1986) 639-659.
15. E. J. Kansa, Multiquadrics-A scattered data approximation scheme with applications to computational fluid dynamics I: Solutions to parabolic, hyperbolic, and elliptic partial differential equations, Computers Math. Applic. 19 (8-9) (1990) 147-161.
16. H. Wendland, Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree, Advances in Computational Mathematics, 4 (1995) 389-396.
17. O. A. Abuzaid, Discontinuous Finite Elements Solution for Neutron Diffusion and Transport, Ph.D. Thesis, London University (1994).
Keywords