Document Type : Research Paper
Authors
Highlights
F.K. Chow, B. Kosovic, S.T. Chan, Source inversion for contaminant plume dispersion in urban environments using building-resolving simulations, Int. 6th Symposium on the Urban Environment, American Meteorological Society (2006).
S. Neumann, L. Glascoe, B. Kosovic, K. Dyer, W. Hanley, J. Nitao, Event reconstruction for atmospheric releases employing urban puff model UDM with stochastic inversion methodology, 6th Symposium on the Urban Environment, American Meteorological Society, GA (2006).
A. Keats, E. Yee, F. Lien, Bayesian inference for source determination with applications to a complex urban environment, Atmospheric Environment, 41 (2007) 465-479.
G. Cervone, P. Franzese, Monte Carlo source detection of atmospheric emissions and error functions analysis, Computers & Geosciences, 36 (2010) 902-909.
A.J. Cimorelli, S.G. Perry1, A. Venkatram, J.C. Weil, R.J.R.B. Wilson, R.F. Lee, Warren D. Peters, W. Brode, J.O. Pauimer, AERMOD: Description of model formulation, EPA 454/R-02-002d, (2002).
U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina 27711, User's guide for the AERMOD meteorological preprocessor (AERMET), EPA-454/B-03-002 (2004).
J.M. Bernardo, A.F.M. Smith, Bayesian Theory, Wiley (1994).
A. Gelman, J.B. Carlin, H.S. Stern, D.B. Rubin, Bayesian data analysis (second edition), Boca Raton, Florida: Chapman and Hall/CRC (2004).
N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, E. Teller, Equation of state calculations by fast computing machines, J. Chem. Phys, 21 (1953) 1087-1092.
C. Andrieu, N. De Freitas, A. Doucent, M.I. Jordan, An introduction to MCMC for machine learning, Machine Learning, 50 (2003) 5-43.
W.R. Gilks, S. Richardson, D.G. Spiegelhalter, Markov chain Monte Carlo in practice, Chapman and Hall, London, UK (1996).
W.K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika, 57(1) (1970) 97-109.
Keywords
F.K. Chow, B. Kosovic, S.T. Chan, Source inversion for contaminant plume dispersion in urban environments using building-resolving simulations, Int. 6th Symposium on the Urban Environment, American Meteorological Society (2006).
S. Neumann, L. Glascoe, B. Kosovic, K. Dyer, W. Hanley, J. Nitao, Event reconstruction for atmospheric releases employing urban puff model UDM with stochastic inversion methodology, 6th Symposium on the Urban Environment, American Meteorological Society, GA (2006).
A. Keats, E. Yee, F. Lien, Bayesian inference for source determination with applications to a complex urban environment, Atmospheric Environment, 41 (2007) 465-479.
G. Cervone, P. Franzese, Monte Carlo source detection of atmospheric emissions and error functions analysis, Computers & Geosciences, 36 (2010) 902-909.
A.J. Cimorelli, S.G. Perry1, A. Venkatram, J.C. Weil, R.J.R.B. Wilson, R.F. Lee, Warren D. Peters, W. Brode, J.O. Pauimer, AERMOD: Description of model formulation, EPA 454/R-02-002d, (2002).
U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina 27711, User's guide for the AERMOD meteorological preprocessor (AERMET), EPA-454/B-03-002 (2004).
J.M. Bernardo, A.F.M. Smith, Bayesian Theory, Wiley (1994).
A. Gelman, J.B. Carlin, H.S. Stern, D.B. Rubin, Bayesian data analysis (second edition), Boca Raton, Florida: Chapman and Hall/CRC (2004).
N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, E. Teller, Equation of state calculations by fast computing machines, J. Chem. Phys, 21 (1953) 1087-1092.
C. Andrieu, N. De Freitas, A. Doucent, M.I. Jordan, An introduction to MCMC for machine learning, Machine Learning, 50 (2003) 5-43.
W.R. Gilks, S. Richardson, D.G. Spiegelhalter, Markov chain Monte Carlo in practice, Chapman and Hall, London, UK (1996).
W.K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika, 57(1) (1970) 97-109.