In cooperation with the Iranian Nuclear Society

Document Type : Research Paper

Authors

Abstract

For increasing isotopic separation power of a gas centrifuge, the axial circulating flows are created by mechanical or thermal drives. In this paper, the feed injection (mechanical drive) and the axial temperature gradient (thermal drive) are used to induce an internal circulating flow and a model is applied as a governing differential equation of the gas motion. The outcoming of the purely axial flow model is used along with the diffusion equation to obtain concentrations of different isotopes at the gas exodus orifices. The machine separative factor is obtained after specifying xP (the product concentration of lighter isotope) and xW (the waste concentration of lighter isotope) from the enriching and stripping sections. Finally, the dependency of the separative factor to rotor speed, cut and feed flow rate was investigated.

Highlights

 

 

  1. 1.    F.H. Bark and T.H. Bark, “On vertical boundary layers in a rapidly rotating gas,” J. Fluid Mech, 78, 749-761 (1976).

 

  1. 2.    J.J.H. Brouwers, “On the motion of a compressible fluid in a rotating cylinder,”  Ph.D. Thesis, Twente University of Technology, Enschede, The Netherlands (1976).

 

  1. 3.    T. Matsuda and K. Hashimoto, “Thermally, mechanically or externally driven flows in a gas centrifuge with insulated horizontal end plates,” J. Fluid Mech, 78, 337-354 (1976).

 

  1. 4.    D.R. Olander, “Technical basis of the gas centrifuge,” Advances in Nuclear Science and Technology, Vol. 6, Academic (1972).

 

  1. 5.    D.G. Avery and E. Davies, Uranium Enrichment by Gas Centrifuge, London: Mills and Boon (1973).

 

  1. 6.    S. Villani, Isotope Separation. American Nuclear Society (1976).

 

  1. 7.    R.L. Hoglund, J. Shacter, E. Von Halle, “Diffusion separation methods,” In Encyclopedia of Chemical Technology, Vol. 7, 3rd edn (ed. R. E. Kirk & D. F. Othmer). Wiley (1979).
  2. 8.    M. Steenbeck, Kernenergie, 1, 921 (1958).

 

  1. 9.    H.M. Parker and T.T. Mayo, U.S. AEC Rep. UVA-279-63U (1963).

 

10. Soubbaramayer, CEA Internal Rep. GC-588 (1961).

 

11. A.S. Berman, U.S. AEC Rep. K-1535 (1963).

 

12. J. Hu, C. Ying, S. Zeng, “Overall separation factor in a gas centrifuge using a purely axial flow model,” Separation Science and Technology, 40, 2139-2152 (2005).

 

13. C. Ying, Z. Guo, H.G. Wood, “Solution of the diffusion equations in a gas centrifuge for separation of multicomponent mixtures,” Separation Science and Technology, 31(18), 2455-2471 (1996).

 

14. H.G. Wood, C. Ying, S. Zeng, Y. Nie, X. Shang, “Estimation of overall separation factor of a gas centrifuge for different multicomponent mixtures by separation theory for binary case,” Separation Science and Technology, 37(2), 417-430 (2002).

 

Keywords

  1.  

     

    1. 1.    F.H. Bark and T.H. Bark, “On vertical boundary layers in a rapidly rotating gas,” J. Fluid Mech, 78, 749-761 (1976).

     

    1. 2.    J.J.H. Brouwers, “On the motion of a compressible fluid in a rotating cylinder,”  Ph.D. Thesis, Twente University of Technology, Enschede, The Netherlands (1976).

     

    1. 3.    T. Matsuda and K. Hashimoto, “Thermally, mechanically or externally driven flows in a gas centrifuge with insulated horizontal end plates,” J. Fluid Mech, 78, 337-354 (1976).

     

    1. 4.    D.R. Olander, “Technical basis of the gas centrifuge,” Advances in Nuclear Science and Technology, Vol. 6, Academic (1972).

     

    1. 5.    D.G. Avery and E. Davies, Uranium Enrichment by Gas Centrifuge, London: Mills and Boon (1973).

     

    1. 6.    S. Villani, Isotope Separation. American Nuclear Society (1976).

     

    1. 7.    R.L. Hoglund, J. Shacter, E. Von Halle, “Diffusion separation methods,” In Encyclopedia of Chemical Technology, Vol. 7, 3rd edn (ed. R. E. Kirk & D. F. Othmer). Wiley (1979).
    2. 8.    M. Steenbeck, Kernenergie, 1, 921 (1958).

     

    1. 9.    H.M. Parker and T.T. Mayo, U.S. AEC Rep. UVA-279-63U (1963).

     

    10. Soubbaramayer, CEA Internal Rep. GC-588 (1961).

     

    11. A.S. Berman, U.S. AEC Rep. K-1535 (1963).

     

    12. J. Hu, C. Ying, S. Zeng, “Overall separation factor in a gas centrifuge using a purely axial flow model,” Separation Science and Technology, 40, 2139-2152 (2005).

     

    13. C. Ying, Z. Guo, H.G. Wood, “Solution of the diffusion equations in a gas centrifuge for separation of multicomponent mixtures,” Separation Science and Technology, 31(18), 2455-2471 (1996).

     

    14. H.G. Wood, C. Ying, S. Zeng, Y. Nie, X. Shang, “Estimation of overall separation factor of a gas centrifuge for different multicomponent mixtures by separation theory for binary case,” Separation Science and Technology, 37(2), 417-430 (2002).