In cooperation with the Iranian Nuclear Society

Document Type : Research Paper

Authors

Abstract

Sonofusion phenomenon will not be achieved unless there is an appropriate host media. To increase the probability of sonofusion reaction, the cavitating bubble’s radius must be as large as possible and due to the bubble collapse, it produces intense shock waves. In this paper, the effective parameters in sonofusion media have been identified and then the roles of these parameters have been analyzed in the maximum bubble growth rate and intensive implosion, to create stronger shock waves, and consequently they lead to occurrence of sonofusion. These parameters are: a) Vapor pressure and condensation coefficient to reach at a high rate of condensation in the collapse stage. b) Ionization energy that has a significant role in the nucleation, bubble growth, and molecular dissociation that is effective in the collapse stage. c) Dielectric constant that has an important role in the electrostatic pressure in bubble growth stage. D) Instant compressibility, static compressibility, and relaxation time in acoustic absorption e) Surface tension and intermolecular potential  that are effective parameters in the growth and coalescence of the bubbles. Thus the optimum media for sonofusion phenomenon have been selected and introduced by performing research in various organic groups.

Highlights

 

 

  1. 1.    R.T. Lahey, R.P. Taleyarkhan, R.I. Nigmatulin, “Sonofusion technology revisited,” Nuclear Engineering and Design, Vol 237, 1571-1585 (2007).

 

  1. 2.    R.P. Taleyarkhan, J.S. Cho, Jr. Lahey, R.I. Nigmatulin, R.C. Block, “Additional evidence of nuclear emissions during acoustic cavitation,” Physical Review E, Vol 69, 11 (2004).

 

  1. 3.    R.I. Nigmatulin, I. Akhatov, A.S. Topolnikov, R.Kh. Bolotnova, N.K. Vakhitova, “Theory of supercompression of vapor bubbles and nanoscale thermonuclear fusion,” Physics of Fluids, Vol 17, 1-31 (2005).

 

  1. 4.    “Imploding vapor bubbles,” Nuclear Engineering and Design, Vol 235, 1079-1091 (2005).

 

  1. 5.    R.P. Taleyarkhan, R.T. Lahey, R. Nigmatulin, “Sonoluminescence and the search for sonofusion,” Advances in Heat Transfer, Vol 39, 1-168 (2006).

 

  1. 6.    ح.ر. ذوالعطا، ف. عباسی، ”شناسایی عوامل مؤثر در محیط میزبان هم‌جوشی صوتی،“ کنفرانس بین‌المللی مکانیک، دانشگاه تهران، (1387).                                                                                    

 

  1. 7.    T. Ohta, “Processes and key properties of pool materials for bubble fusion,” International Journal Hydrogen Energy, Vol 28, 1273-1278 (2003).

 

  1. 8.    T. Ohta, “Life cycle of cavitation bubble for the nuclear emission,” International Journal of Hydrogen Energy, Vol 29, 529-535 (2004).
  2. 9.    T. Ohta, “On the molecular kinetics of acoustic cavitation and the nuclear emission,” International Journal of Hydrogen Energy, Vol 28, 437–443 (2003).

 

10. T. Ohta, “Criteria for nuclear emission by bubble implosion,” International Journal of Hydrogen Energy, Vol. 28, 1011-1014 (2003).

 

11. J.M. Walsh, M.H. Rice, “Dynamic compression of liquids from measurements on strong shock waves,” Journal of. Physical Chemistry, Vol 26, 815-832 (1957).

 

12. T.J. Mason, J.P. Lorimer, “Applied sonochemistry,” John Wiley, NY (2002).

 

13. B. Paul, “Compilation of evaporation coefficients,” Journal of American. Rocket Society. Vol32, 1321-1327 (1926).

 

14. S.J. Canneaux, E.H. Soetens, “Accommodation of ethanol, acetone and benzaldehyde by the liquid vapor interface of water: A molecular dynamics study,” Chemical Physics, Vol. 327, 512–517 (2006).

 

15. R.P. Taleyarkhan, J.S. Cho, Jr. Lahey, R.C. Block, “Nuclear emissions during self nucleated acoustic cavitation,” Physical Review E, Vol 58, 18-25 (2005).

 

16. ح.ر. ذوالعطا، ”جدول خواص فیزیکی- شیمیایی گروه‌های آلی،“ پایان‌نامه کارشناسی ارشد، دانشکده مهندسی هسته‌ای، دانشگاه شهید بهشتی (1387).                                                                

 

Keywords

  1.  

     

    1. 1.    R.T. Lahey, R.P. Taleyarkhan, R.I. Nigmatulin, “Sonofusion technology revisited,” Nuclear Engineering and Design, Vol 237, 1571-1585 (2007).

     

    1. 2.    R.P. Taleyarkhan, J.S. Cho, Jr. Lahey, R.I. Nigmatulin, R.C. Block, “Additional evidence of nuclear emissions during acoustic cavitation,” Physical Review E, Vol 69, 11 (2004).

     

    1. 3.    R.I. Nigmatulin, I. Akhatov, A.S. Topolnikov, R.Kh. Bolotnova, N.K. Vakhitova, “Theory of supercompression of vapor bubbles and nanoscale thermonuclear fusion,” Physics of Fluids, Vol 17, 1-31 (2005).

     

    1. 4.    “Imploding vapor bubbles,” Nuclear Engineering and Design, Vol 235, 1079-1091 (2005).

     

    1. 5.    R.P. Taleyarkhan, R.T. Lahey, R. Nigmatulin, “Sonoluminescence and the search for sonofusion,” Advances in Heat Transfer, Vol 39, 1-168 (2006).

     

    1. 6.    ح.ر. ذوالعطا، ف. عباسی، ”شناسایی عوامل مؤثر در محیط میزبان هم‌جوشی صوتی،“ کنفرانس بین‌المللی مکانیک، دانشگاه تهران، (1387).                                                                                    

     

    1. 7.    T. Ohta, “Processes and key properties of pool materials for bubble fusion,” International Journal Hydrogen Energy, Vol 28, 1273-1278 (2003).

     

    1. 8.    T. Ohta, “Life cycle of cavitation bubble for the nuclear emission,” International Journal of Hydrogen Energy, Vol 29, 529-535 (2004).
    2. 9.    T. Ohta, “On the molecular kinetics of acoustic cavitation and the nuclear emission,” International Journal of Hydrogen Energy, Vol 28, 437–443 (2003).

     

    10. T. Ohta, “Criteria for nuclear emission by bubble implosion,” International Journal of Hydrogen Energy, Vol. 28, 1011-1014 (2003).

     

    11. J.M. Walsh, M.H. Rice, “Dynamic compression of liquids from measurements on strong shock waves,” Journal of. Physical Chemistry, Vol 26, 815-832 (1957).

     

    12. T.J. Mason, J.P. Lorimer, “Applied sonochemistry,” John Wiley, NY (2002).

     

    13. B. Paul, “Compilation of evaporation coefficients,” Journal of American. Rocket Society. Vol32, 1321-1327 (1926).

     

    14. S.J. Canneaux, E.H. Soetens, “Accommodation of ethanol, acetone and benzaldehyde by the liquid vapor interface of water: A molecular dynamics study,” Chemical Physics, Vol. 327, 512–517 (2006).

     

    15. R.P. Taleyarkhan, J.S. Cho, Jr. Lahey, R.C. Block, “Nuclear emissions during self nucleated acoustic cavitation,” Physical Review E, Vol 58, 18-25 (2005).

     

    16. ح.ر. ذوالعطا، ”جدول خواص فیزیکی- شیمیایی گروه‌های آلی،“ پایان‌نامه کارشناسی ارشد، دانشکده مهندسی هسته‌ای، دانشگاه شهید بهشتی (1387).