In cooperation with the Iranian Nuclear Society

Document Type : Research Paper

Authors

Abstract

In this research, separation of fluoride and uranyl ions from high content nitrate and fluoride solution, by γ-Alumina in moving and fixed bed methods, has been studied. In this investigation, the effect of some principal parameters such as, alumina weight, its particle size, and pH on the efficiency of separation of these ions from uranium solution, has been optimized. In the moving bed process, in fact, for decreasing pH, the best and economical condition for uranium extraction by solvent extraction process with TBP has been made available, and therefore it leads to save 800m3 HNO3 as a good advantage. In addition, in the fixed bed process, at an optimum pH, the concentration of uranyl and fluoride ions in the final raffinate decreased for uranium in a range of 50 ppb to 1.3 mg/L, and 170 ppb for fluoride. The effect of adsorption parameters on desorption of these ions was investigated and optimized by sodium carbonate solution. Uranium desorption from the column by sulfuric and nitric acid and sodium carbonate solution was carried out easily, and by sulfuric and sodium carbonate solution 99% recovery was obtained.

Highlights

 

 

  1. 1.    Gmeline Handbook of inorganic chemistry uranium supplement volume D3, Anionexchange, 182-183/274/357-358 (1982).

 

  1. 2.    J. Korkisch, F. Hecht, Hand buch der analytischen chemie Quanti tave bestimmung und trennungsmethoden (III) von uranium, 48-49/250/303 (1972).

 

  1. 3.    J.A. Seneda, “Recovery of uranium from the filtrate of ammonium Durante, prepared from uranium Hexa­­Fluoride,” Journal of Alloys and Compounds, 323-324, 838 -841 (2001).

 

  1. 4.    Z. Halit, Dokuzoguz, Lynchburg “Process for Uranium Separation and Preparation of UO4. 2NH3. 2HF,” US, Patent 3, 980, 757 (1976).

 

  1. 5.    Echigo, “Process for separately recovering uranium and hydrofluoric acid from waste liquor containing uranium and fluorine US-patent 4, 769, 180 (1988).

 

  1. 6.    “Production of yellow cake and Uranium Fluorides,” Proceedings of International Atomic Energy Vienna, 170-171 (1980).

 

  1. 7.    L. Philip, Liyengar and C Venkobacher, Biosorption of U. La. Pr, Nd. EU and Dy by pseudomonas Jeruginosa, Journal of Industrial Microbiology and Biotechnology, 25, 1-7 (2000).

 

  1. 8.    E l Bayoumi, S, Hladik, O, Muenza R, Adsorption behavior of $ sup 99 $ Mo and uranium on alumina in nitric aid. Isotope praxis, Volume 9. No. 4, 131-132 (1973 April).
  2. 9.    Azuma Tatsuhiro, Sendai Akira, Yamazaki Seiichiro, Method for Collecting in Alumina Particle Containing Uranium and Method for Decontamination Treatment, Publication Number, JP2005331276, Applicant  Kawasaki Heavy IND LTD.

 

10. Encyclopedia of Chromatography Edited by Jack Cazes, Florida Atlantic University Boca Raton, Florida, 9 (2001).

 

11. Alcidio Abroa, Choromatographic separation and concentration of thorium and rare earths from uranium using alumina-hydrofluoric acid preparation of carrier radiothurin and contribution to the fission rare earths, IEA NO 217 (Jun 1970).

 

12. C.K. Gupta, H. Singh, Uranium Resource Processing “Secondary Resource,” 282 (2003).

 

13. W. Fresenius, G. Jander, Quantitive Bestimmungs-und trennungs method (III) Aluminum, 30, 52 (1972).

 

14. A.A. Samadi, “Principle of modern chemistry,” 452-451, Paris (16. Dec.1974).

 

15. Gmelin Hand buch der anorgonischen chemie Uranium Erganzungband A3. 104 (1981).

 

16. J.E. Salman, D.k. Hale. Ion Exchange A laboratory manual, 7 (1959).

 

Keywords

  1.  

     

    1. 1.    Gmeline Handbook of inorganic chemistry uranium supplement volume D3, Anionexchange, 182-183/274/357-358 (1982).

     

    1. 2.    J. Korkisch, F. Hecht, Hand buch der analytischen chemie Quanti tave bestimmung und trennungsmethoden (III) von uranium, 48-49/250/303 (1972).

     

    1. 3.    J.A. Seneda, “Recovery of uranium from the filtrate of ammonium Durante, prepared from uranium Hexa­­Fluoride,” Journal of Alloys and Compounds, 323-324, 838 -841 (2001).

     

    1. 4.    Z. Halit, Dokuzoguz, Lynchburg “Process for Uranium Separation and Preparation of UO4. 2NH3. 2HF,” US, Patent 3, 980, 757 (1976).

     

    1. 5.    Echigo, “Process for separately recovering uranium and hydrofluoric acid from waste liquor containing uranium and fluorine US-patent 4, 769, 180 (1988).

     

    1. 6.    “Production of yellow cake and Uranium Fluorides,” Proceedings of International Atomic Energy Vienna, 170-171 (1980).

     

    1. 7.    L. Philip, Liyengar and C Venkobacher, Biosorption of U. La. Pr, Nd. EU and Dy by pseudomonas Jeruginosa, Journal of Industrial Microbiology and Biotechnology, 25, 1-7 (2000).

     

    1. 8.    E l Bayoumi, S, Hladik, O, Muenza R, Adsorption behavior of $ sup 99 $ Mo and uranium on alumina in nitric aid. Isotope praxis, Volume 9. No. 4, 131-132 (1973 April).
    2. 9.    Azuma Tatsuhiro, Sendai Akira, Yamazaki Seiichiro, Method for Collecting in Alumina Particle Containing Uranium and Method for Decontamination Treatment, Publication Number, JP2005331276, Applicant  Kawasaki Heavy IND LTD.

     

    10. Encyclopedia of Chromatography Edited by Jack Cazes, Florida Atlantic University Boca Raton, Florida, 9 (2001).

     

    11. Alcidio Abroa, Choromatographic separation and concentration of thorium and rare earths from uranium using alumina-hydrofluoric acid preparation of carrier radiothurin and contribution to the fission rare earths, IEA NO 217 (Jun 1970).

     

    12. C.K. Gupta, H. Singh, Uranium Resource Processing “Secondary Resource,” 282 (2003).

     

    13. W. Fresenius, G. Jander, Quantitive Bestimmungs-und trennungs method (III) Aluminum, 30, 52 (1972).

     

    14. A.A. Samadi, “Principle of modern chemistry,” 452-451, Paris (16. Dec.1974).

     

    15. Gmelin Hand buch der anorgonischen chemie Uranium Erganzungband A3. 104 (1981).

     

    16. J.E. Salman, D.k. Hale. Ion Exchange A laboratory manual, 7 (1959).