In cooperation with the Iranian Nuclear Society

Document Type : Research Paper

Authors

Abstract

Chemical Vapor Synthesis (CVS) route was used for synthesis of titanium dioxide (TiO2) nanoparticles in hot-walled reactor at 800°C using TiCl4 as precursor. The effect of processing parameters e.g., temperature and amount of precursor on phase structure, size, purity, coagulation and agglomeration of nanoparticles were investigated in this respect. Also, the H2O effects on the size, crystallinity, phase transformation and purity of nanoparticles were studied. Comprehensive experimental observations were confirmed by transmission electron microscopy (TEM), X-ray diffraction analysis and TG-DTA results. The obtained results showed that by increasing the precursor amount and temperature, no phase transformation can be observed but the size, coagulation and agglomeration of titania nanoparticles increase. Also, the results showed that by introducing water vapor, the average particle sizes decrease saliently and no phase transformation and impurity were observed. Titanium dioxide nanoparticles can be used for synthesis of nanofluids. Nanofluids (nano-TiO+­water) as a cooling agent can be used for the enhanced economy and safety of the nuclear reactors.
 

Highlights

  1. 1.    K. Nakaso, K. Okuyama, M. Shimada, S.E. Pratsinis, “Effect of reaction temperature on CVD-made TiO2 primary particle diameter,” Chem. Eng. Sci, 58, 3327–3335 (2003).

 

  1. 2.    C.S. Kim, K. Nakaso, B. Xia, K. Okuyama, M. Shimada, “A new observation on the phase transformation of TiO2 nanoparticles produced by a CVD method,” Aerosol Sci. Technol, 39, 104-112 (2005).

 

  1. 3.    Y. Sun, A. Li, M. Qi, L. Zhang, X. Yao, “High surface area anatase titania nanoparticles prepared by MOCVD,” Materials Sci. & Eng. B, 86, 185–188 (2001).

 

  1. 4.    B. Xia, H. Huang, Y. Xie, “Heat treatment on TiO2 nanoparticles prepared by vapor-phase hydrolysis,” Materials Sci. & Eng. B, 57, 150–154 (1999).

 

  1. 5.    Y. Hu, H.L. Tsai, C.L. Huang, “Phase transformation of precipitated TiO2 nanoparticles,” Materials Sci. & Eng. A, 344, 209-214 (2003).

 

  1. 6.    V.A. Yasir, P.N. Mohandas, K.K.M. Yusuff, “Preparation of high surface area TiO2 (anatase) by thermal hydrolysis of titanyl sulphate solution,” Int. J. Inorg. Mater, 3, 593–596 (2001).

 

  1. 7.    A.D. Paola, G. Cufalo, M. Addamo, M. Bellardita, R. Campostrini, M. Ischia, R. Ceccato, L. Palmisano, “Photocatalytic activity of nanocrystalline TiO2 (brookite, rutile and brookite-based) powders prepared by thermohydrolysis of TiCl4 in aqueous chloride solutions,” Colloid Surface A, 317, 366-376 (2008).

 

  1. 8.    C.S. Kim, K. Okuyama, K. Nakaso, M. Shimada, “Direct measurement of nucleation and growth modes in titania nanoparticles generation by a CVD method,” J. Chem. Eng. Japan, 37, 1379–1389 (2004).

 

  1. 9.    H. Zhao, X. Liu, S.D. Tse, “Effects of pressure and precursor loading in the flame synthesis of titania nanoparticles,” J. Aerosol Sci., 40, Issue 11, 919-937 (2009).

 

10. L. Mao, Q. Li, H. Dang, Z. Zhang, “Synthesis of nanocrystalline TiO2 with high photoactivity and large specific surface area by sol–gel method,” Mater. Res. Bull. 40, 2, 201-208 (2005).

11. H.D. Jang, J. Jeong, “The effect of temperature on particle size in gas-phase production of TiO2,” Aerosol Sci. Technol, 23, 553–560 (1995).

 

12. I. Ahmad, S.S. Bhattacharya, “Effect of process parameters on the chemical vapour synthesis of nanocrystalline titania,” J. Phys. D: Appl. Phys, 41, 155313-155320 (2008).

 

13. K.K. Akurati, S.S. Bhattacharya, M. Winterer, H. Hahn, “Synthesis, characterization and sintering of nanocrystalline Titania powders produced by chemical vapour synthesis,” J. Phys. D: Appl. Phys, 39, 2248-2259 (2006).

 

14. S. Seifried, M. Winterer, H. Hahn, “Nanocrystalline titania films and particles by chemical vapor synthesis,” Chem. Vapor Depos, 6, 239-244 (2000).

 

15. S. Klein, M. Winterer, H. Hahn, “Reduced-pressure chemical vapor synthesis of nanocrystalline silicon carbide powders,”Chem. Vapor Depos, 4, 143-149 (1998).

 

16. M.L. Hitchman, J. Zhao, “The LPCVD of rutile at low temperature,” J. Phys. IV, 9, 357-364 (1999).

 

17. A. Kobata, K. Kusakabe, S. Marooka, “Growth and transformation of TiO2 crystallites in aerosol reactor,” AIChE. J. 37, 347-359 (1991).

 

18. K. Nakaso, T. Fujimoto, T. Seto, M. Shimada, K. Okuyama, M.M. Lunden, “Size distribution change of titania nano-particle agglomerates generated by gas phase reaction, agglomeration, and sintering,” Aerosol Sci. Technol, 35, 929-947 (2001).

 

19. J.H. Yu, J.S. Lee, K.H. Ahn, “In situ characterization of TiO2 nanoparticle in chemical vapor condensation reactor,” Scr. Mater, 44, 2213-2217 (2001).

 

20. S.E. Pratsinis, H. Bai, P. Biswas, M. Frenklach, S.V.R. Mastrangelo, “Kinetics of titanium[IV] chloride oxidation,” J. Am. Ceram. Soc, 73, 2158–2162 (1990).

 

21. B.D. Cullity, “Elements of X-ray diffraction, second edition,” Addison-Wesley Publishing Company Press, Massachusetts, United States (1978).

Keywords

  1. 1.    K. Nakaso, K. Okuyama, M. Shimada, S.E. Pratsinis, “Effect of reaction temperature on CVD-made TiO2 primary particle diameter,” Chem. Eng. Sci, 58, 3327–3335 (2003).

 

  1. 2.    C.S. Kim, K. Nakaso, B. Xia, K. Okuyama, M. Shimada, “A new observation on the phase transformation of TiO2 nanoparticles produced by a CVD method,” Aerosol Sci. Technol, 39, 104-112 (2005).

 

  1. 3.    Y. Sun, A. Li, M. Qi, L. Zhang, X. Yao, “High surface area anatase titania nanoparticles prepared by MOCVD,” Materials Sci. & Eng. B, 86, 185–188 (2001).

 

  1. 4.    B. Xia, H. Huang, Y. Xie, “Heat treatment on TiO2 nanoparticles prepared by vapor-phase hydrolysis,” Materials Sci. & Eng. B, 57, 150–154 (1999).

 

  1. 5.    Y. Hu, H.L. Tsai, C.L. Huang, “Phase transformation of precipitated TiO2 nanoparticles,” Materials Sci. & Eng. A, 344, 209-214 (2003).

 

  1. 6.    V.A. Yasir, P.N. Mohandas, K.K.M. Yusuff, “Preparation of high surface area TiO2 (anatase) by thermal hydrolysis of titanyl sulphate solution,” Int. J. Inorg. Mater, 3, 593–596 (2001).

 

  1. 7.    A.D. Paola, G. Cufalo, M. Addamo, M. Bellardita, R. Campostrini, M. Ischia, R. Ceccato, L. Palmisano, “Photocatalytic activity of nanocrystalline TiO2 (brookite, rutile and brookite-based) powders prepared by thermohydrolysis of TiCl4 in aqueous chloride solutions,” Colloid Surface A, 317, 366-376 (2008).

 

  1. 8.    C.S. Kim, K. Okuyama, K. Nakaso, M. Shimada, “Direct measurement of nucleation and growth modes in titania nanoparticles generation by a CVD method,” J. Chem. Eng. Japan, 37, 1379–1389 (2004).

 

  1. 9.    H. Zhao, X. Liu, S.D. Tse, “Effects of pressure and precursor loading in the flame synthesis of titania nanoparticles,” J. Aerosol Sci., 40, Issue 11, 919-937 (2009).

 

10. L. Mao, Q. Li, H. Dang, Z. Zhang, “Synthesis of nanocrystalline TiO2 with high photoactivity and large specific surface area by sol–gel method,” Mater. Res. Bull. 40, 2, 201-208 (2005).

11. H.D. Jang, J. Jeong, “The effect of temperature on particle size in gas-phase production of TiO2,” Aerosol Sci. Technol, 23, 553–560 (1995).

 

12. I. Ahmad, S.S. Bhattacharya, “Effect of process parameters on the chemical vapour synthesis of nanocrystalline titania,” J. Phys. D: Appl. Phys, 41, 155313-155320 (2008).

 

13. K.K. Akurati, S.S. Bhattacharya, M. Winterer, H. Hahn, “Synthesis, characterization and sintering of nanocrystalline Titania powders produced by chemical vapour synthesis,” J. Phys. D: Appl. Phys, 39, 2248-2259 (2006).

 

14. S. Seifried, M. Winterer, H. Hahn, “Nanocrystalline titania films and particles by chemical vapor synthesis,” Chem. Vapor Depos, 6, 239-244 (2000).

 

15. S. Klein, M. Winterer, H. Hahn, “Reduced-pressure chemical vapor synthesis of nanocrystalline silicon carbide powders,”Chem. Vapor Depos, 4, 143-149 (1998).

 

16. M.L. Hitchman, J. Zhao, “The LPCVD of rutile at low temperature,” J. Phys. IV, 9, 357-364 (1999).

 

17. A. Kobata, K. Kusakabe, S. Marooka, “Growth and transformation of TiO2 crystallites in aerosol reactor,” AIChE. J. 37, 347-359 (1991).

 

18. K. Nakaso, T. Fujimoto, T. Seto, M. Shimada, K. Okuyama, M.M. Lunden, “Size distribution change of titania nano-particle agglomerates generated by gas phase reaction, agglomeration, and sintering,” Aerosol Sci. Technol, 35, 929-947 (2001).

 

19. J.H. Yu, J.S. Lee, K.H. Ahn, “In situ characterization of TiO2 nanoparticle in chemical vapor condensation reactor,” Scr. Mater, 44, 2213-2217 (2001).

 

20. S.E. Pratsinis, H. Bai, P. Biswas, M. Frenklach, S.V.R. Mastrangelo, “Kinetics of titanium[IV] chloride oxidation,” J. Am. Ceram. Soc, 73, 2158–2162 (1990).

 

21. B.D. Cullity, “Elements of X-ray diffraction, second edition,” Addison-Wesley Publishing Company Press, Massachusetts, United States (1978).