In cooperation with the Iranian Nuclear Society

Document Type : Research Paper

Authors

Abstract

One of the most important measures of therapeutic quality in Microbeam Radiation Therapy (MRT) is the Peak to Valley Dose Ratio (PVDR). This parameter is a criterion to evaluate ablation of cancerous cells and sparing of normal cells in tumor and in its surrounding region. The aim of this work is to study the influence of using gold and gadolinium nano-particles as contrast agents on dose distribution and PVDR when a phantom is irradiated by a typical micro-planar X-ray beam of European Synchrotron Radiation Facility (ESRF3). Using Geant4 computer code, a model has been designed to simulate depth dose in an intact phantom made of PMMA4 and dose distribution in a phantom containing assumed tumors in therapeutic techniques of MIMRT5 and BIMRT6. Comparison of simulated results in the intact phantom with the measured values of depth dose reveals the validity of our simulation with the designed model. To improve the efficiency of MRT, enhancement of absorbed dose in tumor tissues and sparing of normal tissues due to presence of contrast agents have been studied. The obtained results show that the enhancement is more noticeable for Au at the peak region and for Gd in the valley region. This approach of introducing contrast agents in MRT could hopefully prepare new treatment planning and improves the efficiency of tumor therapy.

Highlights

 

 

  1. 1.    J. Spiga, E.A. Siegbahn, E. Bräuer-Krisch, P. Randaccio, A. Bravin, “The GEANT4 toolkit for microdosimetry calculations: Application to microbeam radiation therapy "MRT",” Medical Physics 34 (11): 4322-4330 (2007).

 

  1. 2.    D.N. Slatkin, P.O. Spanne, F.A. Dilmanian, M. Sandborg, Microbeam Radiation Therapy. Med. Phys. 19: 1395-1400 (1992).

 

  1. 3.    F.A. Dilmanian, G.M. Moris, N. Zhong, T. Bacarian, J.F. Hainfeld, J. Kalef-Ezra, L.J. Brewington, J. Tammam, “Murine EMT-6 carcinoma: high therapeutic efficacy of microbeam radiation therapy,” Radiation Research 159(5): 632-641 (2003).

 

  1. 4.    E. Brauer-Krisch, H. Requardt, P. Regnard, S. Corde, E. Siegbahn, G. LeDuc, T. Brochard, H. Blattmann, J. Laissue, A. Bravin, “New irradiation geometry for microbeam radiation therapy,” Phys. Med. Biol. 50: 3103-3111 (2005).

 

  1. 5.    E. Brauer-Krisch, H. Requardt, P. Regnard, S. Corde, E.A. Siegbahn, G. LeDuc, H. Blattmann, J. Laissue, A. Bravin, “Exploiting geometrical irradiation possibilities in MRT application,” Nucl. Instr. and Meth. in Phys. Res. A 548: 69-71 (2005).

 

  1. 6.    J. Stepanek, H. Blattmann, J.A. Laissue, N. Lyubimova, M.Di. Michiel, D.N. Slatkin, “Physics study of microbeam radiation therapy with PSI-version of Monte Carlo code GEANT as a new computational tool,” Med. Phys. 27(7): 1664-1675 (2000).

 

  1. 7.    F.A. Dilmanian, Y. Qu, S. Liu, C.D. Cool, J. Gilbert, J.F. Hanifeld, C.A. Kruse, J. Laterra, D. Lenihan, M.M. Nawrocky, G. Pappas, C.-I. Sze, T. Yuasa, Z. Zhong, Z. Zhong, J.W. Mcdonald, “X-ray microbeam: Tumor therapy and central nervous system research,” Nucl. Instr. & Meth. in Phys. Res. A 548(1-2): 30-37 (2005).

 

  1. 8.    F.A. Dilmanian, Z. Zhong, T. Bacarian, H. Benveniste, P. Romanelli, R. Wang, J. Welwart, T. Yuasa, E.M. Rosen, D.J. Ancchel, “Interlaced X-ray microplanar beams: A radiosurgery approach with clinical potential,” PNAS 103(25): 9709-9714 (2006).
  2. 9.    I. Orion, A.B. Rosenfeld, F.A. Dilmanian, F. Telang, B. Ren, Y. Namito, “Monte Carlo simulation of dose distributions from a synchrotron-produced microplanar beam array using the EGS4 code system,” Phys. Med. Biol. 45: 2497-2508 (2000).

 

  1. 10.              E.A. Siegbahn, E. Brauer-Krisch, J. Stepanek, H. Blattmann, J.A. Laissue, A. Bravin, “Dosimetric studies of microbeam radiation therapy(MRT) with Monte Carlo simulations,” Nucl. Instr. and Meth. in Phys. Res. A 548: 54-58 (2005).

 

  1. 11.              J. Spiga, E.A. Siegbahn, E. Brauer-Krisch, P. Randaccio, A. Bravin, “Microdosimetry for Microbeam Radiation Therapy(MRT): theoretical calculations using the Monte Carlo toolkit,” IEEE Nuclear Science Symposium Conference Record: 1363-1367 (2006).

 

  1. 12.              E. Brauer-Krisch, A. Bravin, M. Lerch, A.B. Rosenfeld, J. Stepanek, M.Di. Michiel, J.A. Laissue, “MOSFET dosimetry for microbeam radiation therapy at the Euorpean Synchrotron Radiation Facility,” Med. Phys. 30(4): 583-589 (2003).

 

  1. 13.              A.B. Rosenfeld, L.F. Lerch Michael, T. Korn, E. Brauer-Krisch, A. Bravin, A. Holmes-Siedle, B.J. Allen, “Feasibility study of online high-spatial-resolution MOSFET dosimetry in static and pulsed X-ray radiation fields,” IEEE Transaction on nuclear science 48(6): 2061-2068 (2001).

 

  1. 14.              A.B. Rosenfeld, G.I. Kaplan, T. Kron, B.J. Allen, F.A. Dilmanian, I. Orion, B. Ren, M.L.F. Lerch, A. Holmes-Siedle, “MOSFET dosimetry of an X-ray microbeam,” IEEE Transaction on nuclear science 46(6): 1774-1780 (1999).

 

  1. 15.              G.I. Kaplan, A.B. Rosenfeld, B.J. Allen, J.T. Booth, M.G. Carolan, A. Holmes-Siedle, “Improved spatial resolution by MOSFET dosimetry of an X-ray microbeam,” Med. Phys. 27(1): 239-244 (2000).

 

  1. 16.              F.A. Dilmanian, G.M. Moris, F. Hainfeld James, “Methods for implementing Microbeam Radiation Therapy,” U.S. Patent No. 7194063 (2007).
  2. 17.              M.C. Biston, A. Joubert, J.F. Adam, H. Elleaume, S. Bohic, A.M. Charvet, F. Esteve, N. Foray, J. Balosso, “Cure of fisher rats bearing radioresistant F98 glioma treated with cis-Platinum and irradiated with monochromatic synchrotron X-rays,” Cancer Research 64: 2317-2323 (2004).

 

  1. 18.              J.F. Hainfeld, D.N. Slatkin, H.M. Smilowitz, “The use of gold nanoparticles to enhance radiotherapy in mice,” Phys. Med. Biol. 49(18): 309-315 (2004).

 

  1. 19.              V. Honkimaki, P. Suortti, “Whole-pattern fitting in energy-dispersive powder diffraction,” J. Appl. Crystallogr. 25: 97-104 (1992).

 

  1. 20.              W. Archer David, “Collimator for producing an array of microbeams,” US patent, No. 5, 771, 270 (1998).

 

  1. 21.              E. Brauer-krisch, A. Bravin, L. Zhang, E. Siegbahn, “Characterization of a tungsten/gas multislit collimator for microbeam radiation therapy at the European Synchrotron Radiation Facility,” REVIEW OF SCIENTIFIC INSTRUMENTS (76): 064303 (2005).

 

  1. 22.              “Geant4 Collaboration  Physics Reference Manual,” Version: geant4 9.0, Online available at http: //geant4.wen.cern.ch (2007).

 

Keywords

  1.  

     

    1. 1.    J. Spiga, E.A. Siegbahn, E. Bräuer-Krisch, P. Randaccio, A. Bravin, “The GEANT4 toolkit for microdosimetry calculations: Application to microbeam radiation therapy "MRT",” Medical Physics 34 (11): 4322-4330 (2007).

     

    1. 2.    D.N. Slatkin, P.O. Spanne, F.A. Dilmanian, M. Sandborg, Microbeam Radiation Therapy. Med. Phys. 19: 1395-1400 (1992).

     

    1. 3.    F.A. Dilmanian, G.M. Moris, N. Zhong, T. Bacarian, J.F. Hainfeld, J. Kalef-Ezra, L.J. Brewington, J. Tammam, “Murine EMT-6 carcinoma: high therapeutic efficacy of microbeam radiation therapy,” Radiation Research 159(5): 632-641 (2003).

     

    1. 4.    E. Brauer-Krisch, H. Requardt, P. Regnard, S. Corde, E. Siegbahn, G. LeDuc, T. Brochard, H. Blattmann, J. Laissue, A. Bravin, “New irradiation geometry for microbeam radiation therapy,” Phys. Med. Biol. 50: 3103-3111 (2005).

     

    1. 5.    E. Brauer-Krisch, H. Requardt, P. Regnard, S. Corde, E.A. Siegbahn, G. LeDuc, H. Blattmann, J. Laissue, A. Bravin, “Exploiting geometrical irradiation possibilities in MRT application,” Nucl. Instr. and Meth. in Phys. Res. A 548: 69-71 (2005).

     

    1. 6.    J. Stepanek, H. Blattmann, J.A. Laissue, N. Lyubimova, M.Di. Michiel, D.N. Slatkin, “Physics study of microbeam radiation therapy with PSI-version of Monte Carlo code GEANT as a new computational tool,” Med. Phys. 27(7): 1664-1675 (2000).

     

    1. 7.    F.A. Dilmanian, Y. Qu, S. Liu, C.D. Cool, J. Gilbert, J.F. Hanifeld, C.A. Kruse, J. Laterra, D. Lenihan, M.M. Nawrocky, G. Pappas, C.-I. Sze, T. Yuasa, Z. Zhong, Z. Zhong, J.W. Mcdonald, “X-ray microbeam: Tumor therapy and central nervous system research,” Nucl. Instr. & Meth. in Phys. Res. A 548(1-2): 30-37 (2005).

     

    1. 8.    F.A. Dilmanian, Z. Zhong, T. Bacarian, H. Benveniste, P. Romanelli, R. Wang, J. Welwart, T. Yuasa, E.M. Rosen, D.J. Ancchel, “Interlaced X-ray microplanar beams: A radiosurgery approach with clinical potential,” PNAS 103(25): 9709-9714 (2006).
    2. 9.    I. Orion, A.B. Rosenfeld, F.A. Dilmanian, F. Telang, B. Ren, Y. Namito, “Monte Carlo simulation of dose distributions from a synchrotron-produced microplanar beam array using the EGS4 code system,” Phys. Med. Biol. 45: 2497-2508 (2000).

     

    1. 10.              E.A. Siegbahn, E. Brauer-Krisch, J. Stepanek, H. Blattmann, J.A. Laissue, A. Bravin, “Dosimetric studies of microbeam radiation therapy(MRT) with Monte Carlo simulations,” Nucl. Instr. and Meth. in Phys. Res. A 548: 54-58 (2005).

     

    1. 11.              J. Spiga, E.A. Siegbahn, E. Brauer-Krisch, P. Randaccio, A. Bravin, “Microdosimetry for Microbeam Radiation Therapy(MRT): theoretical calculations using the Monte Carlo toolkit,” IEEE Nuclear Science Symposium Conference Record: 1363-1367 (2006).

     

    1. 12.              E. Brauer-Krisch, A. Bravin, M. Lerch, A.B. Rosenfeld, J. Stepanek, M.Di. Michiel, J.A. Laissue, “MOSFET dosimetry for microbeam radiation therapy at the Euorpean Synchrotron Radiation Facility,” Med. Phys. 30(4): 583-589 (2003).

     

    1. 13.              A.B. Rosenfeld, L.F. Lerch Michael, T. Korn, E. Brauer-Krisch, A. Bravin, A. Holmes-Siedle, B.J. Allen, “Feasibility study of online high-spatial-resolution MOSFET dosimetry in static and pulsed X-ray radiation fields,” IEEE Transaction on nuclear science 48(6): 2061-2068 (2001).

     

    1. 14.              A.B. Rosenfeld, G.I. Kaplan, T. Kron, B.J. Allen, F.A. Dilmanian, I. Orion, B. Ren, M.L.F. Lerch, A. Holmes-Siedle, “MOSFET dosimetry of an X-ray microbeam,” IEEE Transaction on nuclear science 46(6): 1774-1780 (1999).

     

    1. 15.              G.I. Kaplan, A.B. Rosenfeld, B.J. Allen, J.T. Booth, M.G. Carolan, A. Holmes-Siedle, “Improved spatial resolution by MOSFET dosimetry of an X-ray microbeam,” Med. Phys. 27(1): 239-244 (2000).

     

    1. 16.              F.A. Dilmanian, G.M. Moris, F. Hainfeld James, “Methods for implementing Microbeam Radiation Therapy,” U.S. Patent No. 7194063 (2007).
    2. 17.              M.C. Biston, A. Joubert, J.F. Adam, H. Elleaume, S. Bohic, A.M. Charvet, F. Esteve, N. Foray, J. Balosso, “Cure of fisher rats bearing radioresistant F98 glioma treated with cis-Platinum and irradiated with monochromatic synchrotron X-rays,” Cancer Research 64: 2317-2323 (2004).

     

    1. 18.              J.F. Hainfeld, D.N. Slatkin, H.M. Smilowitz, “The use of gold nanoparticles to enhance radiotherapy in mice,” Phys. Med. Biol. 49(18): 309-315 (2004).

     

    1. 19.              V. Honkimaki, P. Suortti, “Whole-pattern fitting in energy-dispersive powder diffraction,” J. Appl. Crystallogr. 25: 97-104 (1992).

     

    1. 20.              W. Archer David, “Collimator for producing an array of microbeams,” US patent, No. 5, 771, 270 (1998).

     

    1. 21.              E. Brauer-krisch, A. Bravin, L. Zhang, E. Siegbahn, “Characterization of a tungsten/gas multislit collimator for microbeam radiation therapy at the European Synchrotron Radiation Facility,” REVIEW OF SCIENTIFIC INSTRUMENTS (76): 064303 (2005).

     

    1. 22.              “Geant4 Collaboration  Physics Reference Manual,” Version: geant4 9.0, Online available at http: //geant4.wen.cern.ch (2007).