In cooperation with the Iranian Nuclear Society

Experimental investigation of the host medium viscosity effect on formation and stability of bubbles in superheated droplet detector, fabricated using polyacrylamide, in neutron field

Document Type : Research Paper

Authors

Abstract
 The effect of the host medium viscosity of the superheated drop detector on formation and stability of Freon-12 bubbles produced by neutron irradiation has been investigated. By variation of the acrylamide and methylenbisacrylamide concentrations on monomer solution, different polyacrylamide gels with various viscosities of 1 up to 13 Pa-s were prepared. The gels were utilized to prepare the superheated droplet detector. The irradiation results of the prepared superheated droplet detector using an 241Am-Be neutron source and the 2.89 MeV neutrons obtained from the d-d neutron generator showed that the formed bubbles in the fabricated detector, based on non-crosslinked polyacrylamide gel, with the viscosity of 5-6 Pa-s were stable and could be counted after irradiation with the naked eye. The number of bubbles were found to be proportional to the neutron fluence.

Keywords


[1] F. d’Errico, Radiation dosimetry and spectrometry with superheated emulsions, Nucl. Instr. and Meth B, 184 (2001) 229.
[2] R.E. Apfel, The superheated drop detector, Nucl. Instr. and Meth A, 162 (1979) 603.
[3] H. Ing, Direct reading detector/ dosimeter for neutron and other high LET radiation, 4 (1986) 613-758.
[4] K. Alikanotis, Radiotherapy dose assessment using BNCT in conventional LINACs high-energy treatment: simulation and experiment, proceeding of the 7th young researchers’ boron neutron capture therapy meeting, Granada, Spain (2013).
[5] J. Rivera, R. Falcão, The measurement of photoneutron dose in the vicinity of clinical linear accelerators, Radiation Protection Dosimetry, 130 (2008) 403-409.
[6] M. Das, B. Chatterjee, B. Roy, S. Roy, Superheated drop as a neutron spectrometer, Nucl. Instr. and Meth A, 452 (2000) 273.
[7] B.J. Lewis, Review of bubble detector response characteristics and results from Space, Radiation Protection Dosimetry, 150 (2012) 1.
[8] D. Ponraju, C.P. Jayashree, H. Krishnan, S. Viswanathan, R. Indira, Development of superheated emulsion technique for alpha activity measurements, Nucl. Instr. and Meth A, 580 (2007) 388.
[9] G. Zhang, B. Ni, L. Li, P. Lv, W. Tian, Z. Wang, C. Zhang, H. Luo, S. Jiang, P. Wang, Study on bubble detectors used as personal neutron dosimeters, Applied radiation and isotopes, 69 (2011) 1453.
[10] M. Felizardo, R. Martins, A. Ramos, T. Morlat, T. Girard, F. Giuliani, D. Limagne, G. Waysand, J. Marques, Improved acoustic instrument of the simple detector, Nucl. Instr. and Meth A, 585 (2008) 61.
[11] P.K. Mondal, B.K. Chatterjee, An active device for volumetric measurement of drop nucleation in superheated emulsion detector, Meas. Sci. Technol., 19 (2008) 105820.
[12] D. Ponraju, H. Krishnan, S. Viswanathan, R. Indira, Preliminary results on bubble detectors as personal neutron dosimeter, Radiation Protection Dosimerty, 144 (2011) 177-181.
[13] G. Raisali, P. Rezaeian, Calculation of scattered nucleus spectrum in neutron elastic scattering, Annual Physics Conference of Iran, Yazd, Aug (2011).
[14] F. Seitz, On the theory of the bubble chamber, Physics of Fluids, 1 (1958) 2.
[15] R. Apfel, S. Roy, Y.-C. Lo, Prediction of the minimum neutron energy to nucleate vapor bubbles in superheated liquids, Physical review, A, General Physics, 31 (1985) 3194.
[16] J.S. Hadmard, Mouvement permanent lent d’une sphere liquid et visqueuse dans une liquid visqueuse, CR Acad Scim, 152 (1911) 1735.
[17] Mala Das, T. Sawamura, Estimation of nucleation parameter fpr neutron-induced nucleation in superheated emulsion, Nucl. Instr. and Meth A, 531 (2004) 577.
[18] C.R. Bell, Radiation induced boiling in superheated water and organic liquids, Nuclear Science and Engineering, 53 (1974) 458.
[19] P. Snabre, F. Magnifotcham, I. Formation, rise of a bubble stream in a viscous liquid, Eur. Phys. J. B, 4 (1998) 369.
[20] R. Sydnaks, Conformance improvement in a subterranean hydrocarbon-bearing formation using polymer gel, US Patent, 4 (1987) 683-949m.
[21] W.R. Leo, Techniques for nuclear and particle physics experiments, 2nd edition, Springer-Verlag, Chapter, 4 (1994) 98.
[22] M.B. Chadwick, M. Herman, P. Oblozinský, M.E. Dunn, Y. Danon, A.C. Kahler, D.L. Smith, B. Pritychenko, G. Arbanas, R. Arcilla, R. Brewer, D.A. Brown, R. Capote, A.D. Carlson, Y.S. Cho, H. Derrien, K. Guber, G.M. Hale, S. Hoblit, S. Holloway, T.D. Johnson, T. Kawano, B.C. Kiedrowski, H. Kim, S. Kunieda, N.M. Larson, L. Leal, J.P. Lestone, R.C. Little, E.A. McCutchan, R.E. MacFarlane, M. MacInnes, C.M. Mattoon, R.D. McKnight, S.F. Mughabghab, G.P.A. Nobre, G. Palmiotti, A. Palumbo, M.T. Pigni, V.G. Pronyaev, R.O. Sayer, A.A. Sonzogni, N.C. Summers, P. Talou, I.J. Thompson, A. Trkov, R.L. Vogt, S.C. van der Marck, A. Wallner, M.C. White, D. Wiarda, P.G. Young, ENDF/B-VII. 1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data. Nuclear Data Sheets, (2011) 112.