[1] K. Krauth, Handbook of applied superconductivity, edited by B. Seeber. IOP. Lodon. 1 (1998) 397-488.
[2] R. Aymar, ITER R&D: executive summary: design overview, Fusion Engineering and Design, 55 (2001) 107-118.
[3] N. Ayai, A. Mikumo, Y. Yamada, K. Takahashi, K. Sato, Improvement of critical current density and residual resistivity on jelly-roll processed Nb3Al superconducting wires, Applied Superconductivity. 7 (1997) 1564-1567.
[4] Y. Yamada, N. Ayai, A. Mikumo, M. Ito, K. Hayashi, Development of Nb3Al superconductors for international thermonuclear experimental reactor (ITER), Cryogenics. 39 (1999) 115-122.
[5] F.A. Santos, A.S. Ramos, C. Santos, D. Rodrigues Jr, Obtaining and stability verification of superconducting phases of the Nb-Al and Nb-Sn systems by mechanical alloying and low-temperature heat treatments, Journal of Alloys and Compounds. 491 (2010) 187-191.
[6] S.N. Patankar, F.H. Froes, Formation of Nb3Sn using mechanically alloyed Nb-Sn powder, Solid State Science. 6 (2004) 887-890.
[7] S.N. Patankar, F.H. Froes, Transformation of mechanically alloyed Nb-Sn powder to Nb3Sn, Metallurgical and Materials Transactions A, 35 (2004) 3009-3012.
[8] M. Lopez, J.A. Jimenez, K. Raman, R.V. Mangalaraja, Synthesis of nano intermetallic Nb3Sn by mechanical alloying and annealing at low temperature, Journal of Alloys and Compounds, 612 (2014) 215-220.
[9] A.R. Kaufmann, J.J. Pickett, Multifilament Nb3Sn superconducting wire, Journal of Applied Physics, 42 (1971) 58-67.
[10] L.D. Cooley, Y.F. Hu, A.R. Moodenbaugh, Enhancement of the upper critical field of Nb3Sn utilizing disorder introduced by ball milling the elements, Applied Physics Letters, 88 (2006) 142506-3.
[11] B.A. Glowaki, D.J. Fray, X-Y. Yan, G. Chen, Superconducting Nb3Sn intermetallics made by electrochemical reduction of Nb2O5-SnO2 oxides, Physica C, 387 (2003) 242-246.
[12] X-Y. Yan, D.J. Fray, Electrosynthesis of NbTi and Nb3Sn superconductors from oxide precursors in CaCl2-based melts, Advanced Functional Materials, 15 (2005) 1757-1761.
[13] C. Suryanarayana, Mechanical alloying and milling, Progress in Materials Science, 46 (2001) 1-180.
[14] R. Sen, G.Ch. Das, S.M. Jee, X-ray diffraction line profile analysis of nano-sized cobalt in silica matrix synthesized by sol–gel method, Journal of Alloys and Compounds, 490 (2010) 515-523.
[15] G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram, Acta Metallurgica, 1 (1953) 22–31.
[16] P. Villars, L.D. Calvert, Pearson’s handbook of crystallographic data for intermetallic phases, American Society for Metals, Metals Park, (1985).
[17] M.K. West, PhD Thesis, Processing and characterization of oxide dispersion strengthened 14 YWT ferritic alloys, University of Tennesse, Knoxville, (2006).
[18] B. Pandey, M.A. Rao, H.C. Verma, S. Bhargava, Structural and compositional changes during mechanical milling of the Fe-Cr system, Journal of Physics Condensed Matter, 6 (2005) 7981-7993.
[19] J.L. Jorda, H.U. Flukiger, J. Muller, A new metallurgical investigation of the niobium-aluminium system, Journal of the Less Common Metals, 75 (1980) 227-239.
[20] P.E. Johnson, Y. IM, L.T. Mcknelly, J.W.Jr. Morris, Formation of Nb3Al in Nb-Al superconductors by powder process, Magnetics, IEEE Transactions, 23 (1987) 1432-1435.
[21] K. Barmak, K.R. Coffey, D.A. Rudman, S. Foner, Phase formation sequence for the reaction of multilayer thin films of Nb/Al, Journal of Applied Physics, 67 (1990) 7313-7322.
[22] C.C. Koch, Intermetallic matrix composites prepared by mechanical alloying-a review, Materials Science and Engineering, 244 (1998) 39-48.
[23] M.S. Kim, C.C. Koch, Structural development during mechanical alloying of crystalline niobium and tin powders, Journal of Applied Physics, 62 (1987) 3450-3453.
[24] J.W. Edindton, Electron diffraction in the electron microscope, London, Macmillan (1975).