In cooperation with the Iranian Nuclear Society

Document Type : Research Paper

Authors

Abstract

 In this study, DNA damage and statistics of hit in any compartments of B-DNA conformation of genetic material of living cells, induced by monoenergetic electrons, have been studied using Monte Carlo Geant4 (Geometry and tracking 4)-DNA toolkit. Simple 34 bp segments of B-DNA conformation, repeated randomly in high number, and monoenergetic electrons (1-20 keV) have been simulated in a volume of typical animal cell nucleus. The average yields of single strand and double strand damage for this energy range of electrons were 24.6 Gy-1Gbp-1 and 0.295 Gy-1Gbp-1, respectively. The highest hit efficiency is for phosphodiester volume of B-DNA model and the most single strand break damage yield has been calculated for 8 keV electrons. The averaged DSB to SSB fraction for this energy range electrons is about 0.031.
 

Keywords

[1] M. Folkard, K.M. Prise, B. Vojnovic, S. Davies, M.J. Roper, B.D. Michael, Measurement of DNA damage by electrons with energies between 25 and 4000 eV, Int. J. Radiat. Biol, 64 (1993) 651-658.
[2] H. Nikjoo, P. O’Neill, M. Terrissol, D.T. Goodhead, Quantitative modelling of DNA damage using Monte Carlo track structure method, Rad. Environ. Bioph, 38 (1999) 31-38.
[3] H. Nikjoo, C.E. Bolton, R. Watanabe, M. Terrissol, P. O’Neill, D.T. Goodhead, Modeling of DNA damage induced by energetic electrons (100 eV to 100 keV), Rad. Prot. Dosimetry, 99 (2002) 77–80.
[4] H. Nikjoo, P. O’Neill, D.T. Goodhead, M. Terrissol, Computational modelling of low-energy electron-induced DNA damage by early physical and chemical events, Int. J. Radiat. Biol, 71 (1997) 467-483.
[5] Z. Francis, S. Incerti, R. Capra, B. Mascialino, G. Montarou, V. Stepan, C. Villagrasa, Molecular scale track structure simulations in liquid water using the Geant4-DNA Monte-Carlo processes, App. Radiat. Isot, 69 (2011) 220–226.
[6] M.A. Bernal, J.A. Liendo, An investigation on the capabilities of the PENELOPE MC code in nanodosimetry, Med. Phys, 36 (2009) 620-625.
[7] M.A. Hill, The variation in biological effectiveness of x-rays and gamma rays with energy, Radiat. Protect. Dosimetry, 112 (2004) 471-481.
[8] E.L. Alpen, Radiation biophysics, 2nd edition, Academic Press (1999).
[9] C.N. Sonntag, Free-radical-induced DNA damage as approached by quantum-mechanical and Monte Carlo calculations: an overview from the standpoint of an experimentalist, Adv. Quant. Chem, 52 (2007) 5-20.
[10] W. Friedland, M. Dingfelder, P. Kundrát, P. Jacob, Track structures, DNA targets and radiation effects in the biophysical Monte Carlo simulation code PARTRAC, Mut. Res, 711 (2011) 28-40.
[11] A. Mozumder, Y. Hatano, Charged particle and photon interaction with matter, Marcel Dekker (2004).
[12] C.V. Sonntag, Free-radical-induced DNA damage and its repair: a chemical perspective, Springer (2006).
[13] G. Raisali, L. Mirzakhanian, S.F. Masoudi, F. Semsarha, Calculation of DNA strand breaks due to direct and indirect effects of Auger electrons from incorporated 123I and 125I radionuclides using Geant4 computer code, Int. J. Radiat. Biol, 89 (2013) 57-64.
[14] C. Bousis, Dosimetry on sub-cellular level for intracellular incorporated Auger-electron-emitting radionuclides: a comparison of Monte Carlo simulations and analytic calculations, Radiat. Protect. Dosimetry, 143 (1) (2011) 33-41.
[15] E. Pomplun, A new DNA target model for track structure calculations and its first application to 1-125 Auger electrons, Int. J. Radiat. Biol, 59 (3) (1991) 625-642.
[16] N.J. Carron, An introduction to the passage of energetic particles through matter, CRC Press (2007).
[17] H. Nikjoo, P. O’Niell, W.E. Wilson, D.T. Goodhead, Computational approach for determining the spectrum of DNA damage induced by ionizing radiation, Rad. Res, 156 (2001) 577-583.
[18] C. Villagrasa, Z. Francis, S. Incerti, Physical models implemented in the Geant4-DNA extension of the Geant-4 toolkit for calculating initial radiation damage at the molecular level, Radiat. Prot. Dosimetry, 143 (2011) 214-218.
[19] Z. Francis, S. Incerti, R. Caprac, B. Mascialinod, G. Montaroue, V. Stepanf, C. Villagrasa, Molecular scale track structure simulations in liquid water using the Geant4-DNA Monte Carlo processes, Appl. Radiat. Isotopes, 69 (2011) 220-226.
[20] S. Incerti, C. Champion, H.N. Tran, M. Karamitros, M. Bernal, Energy deposition in small-scale targets of liquid water using the very low energy electromagnetic physics processes of the Geant4 toolkit, Nucl. Inst. Met. Phys. Res. B, 306 (2013) 158-164.
[21] F. Semsarha, B. Goliaei, G. Raisali, H. Khalafi, L. Mirzakhanian, An investigation on the radiation sensitivity of DNA conformations to 60Co gamma rays by using Geant4 toolkit, Nucl. Inst. Meth. B, 323 (2014) 75-81.
[22] S. Neidle, Principles of nucleic acid structure, Oxford University Press Inc. (2007).
[23] M. Dingfelder, D. Hantke, M. Inokuti, H.G. Paretzke, Electron inelastic scattering cross sections in liquid water, Radiat. Phys. Chemist. 53 (1998) 1-18.
[24] Ph. Bernhardt, W. Friedland, P. Jacob, H.G. Paretzke, Modelling of ultrasoft x-ray induced DNA damage using structured higher order DNA targets, Int. J. Mass Spect, 223 (2003) 579-597.
[25] M. Pinak, A. Ito, Energy deposition in structural parts of DNA by monoenergetic electrons, J. Radiat. Res, 34 (1993) 221-234.
[26] M.A. Bernal, C.E. Almeida, C. Sampaio, S. Incerti, C. Champion, P. Nieminen, The invariance of the total direct DNA strand break yield, Med. Phys, 38 (2011) 4147-4153.
[27] S. Chauvie, Z. Francis, S. Guatelli, S. Incerti, B. Mascialino, F. Moretto, P. Nieminen, M.G. Pia, Geant4 physics processes for microdosimetry simulation: design foundation and implementation of the first set of models, IEEE Trans. Nucl. Sci, 54 (2007) 2619-2628.
[28] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular biology of the cell, 4nd ed., Garland Science (2002).