In cooperation with the Iranian Nuclear Society

Document Type : Research Paper

Authors

Abstract

Carbon nanotubes (CNTs) were grown on nickel catalysts by thermal chemical vapor deposition (TCVD), using CH4 as precursors, at atmospheric pressure. Ion beam sputtering has been used for Ni deposition on various silicon substrates. In this study, the effect of oxided silicon surface on the Ni agglomeration and CNTs growth was investigated, using scanning electron microscopy (SEM) and micro-Raman. SEM results show the role of silicon oxide film on the silicon (SiO2/Si), concerning agglomeration of Ni layer and hence, the CNTs growth. The graphite structure of the tubes was confirmed by Raman spectroscopy. 

Highlights

  1. H. Maeno, In “The nano-micro interface,” H.J. Fecht, M. Werner(eds), Wiley-VCH, 59-69 (2004).

     

  2. W.J. Cromie, “Carbon hits to revolutionize computer construction,”

     http://www.news.harvard.edu/gazette/2000.

     

  3. S. Iijima, “Helical microtubules of graphitic carbon,” nature, 354, 56-58 (1991).

     

  4. M. Meyyappan, L. Delzeit, A. Chassell, D. Hash, “Carbon nanotube growth by PECVD: a review,” Plasma Sources Sci. Techno., 12, 205-216 (2003).

     

  5. V.F. Mekulov, D.H. Lowndes, Y.Y. Wei, G. Eresand, E. Voelket, “Patterned growth: individual and multiple vertically carbon nanofibers,” Appl. Phys. Lett., 76, 3555-3557 (2000).

     

  6. L. Delzeit, L. McAnich, B.A. Cruden, D.H. Bchen, J. Han, M. Meyyapan, “Growth multiwall carbon nanotubes in an inductively coupled plasma reactor,” J. App. Phys., 91, 6027-6033 (2002).

     

  7. Y.R. Jeng, P.C. Tsa, T.H. Fang, “effects of temperature and vacancy defects on tensil deformation of single walled carbon nanotubes,C,” J. Appl. Phys. Chem. Solids, 65, 1849-1856 (2004).

     

  8. E.T. Thostenson, Z. Ren, T.W. Chou, “Advances in the science and technology of carbon nanotubes and their composites :a review,” Composites Science and Technology, 61, 1899-1912 (2001).

     

  9. X. Fu, H. Zhang, Y. Chen, S. Li, S. Yi, C. Zhou, M. Li, Y. Zhu, J. Chen, “The effect of carbon nanotubes on the electrochemical hydrogen storage performance of the LaNi5 rare earth alloy,” Physica, E25, 414-420 (2005).

     

  10. H. Takikawa, O. Kusano, “Graphite spot produces carbon nanotubes in arc discharge,” J. Phys. D32, 2433-2437 (1999).

     

  11. T. Ikegami, F. Nakanishi, M. Uchiyama, K. Ebihara, “Optical measurement in carbon nanotubes formation by pulsed laser ablation,” Thin Solid Films, 457, 7-11 (2004).

     

     

  12. P. Nikolaev, M.J. Bronikowski, R. Kelley, F. Rohmund, D.T. Colbert, K.A. Smith, R.E. Smalley, “Gas phase catalytic growth of single walled carbon nanotubes from carbon monoxide,” Chem. Phys. Lett., 313, 91-97 (1999).

     

  13. L. Delzeit, B. Chen, A. Chassell, R. Stevens, C.Nugent, M. Meyyappan, “Multilayered metal catalysts for controlling the density of single walled carbon nanotube growth,” Chem. Phys. Lett., 348, 368-374 (2001).

     

  14. C.M. Hsu, C.H. Lin, H.J. Lai, C.T. Kuo, “Root growth of multi wall carbon nanotubes by MPCVD,” Thin Solid Films, 471, 140-144 (2005).

     

  15. Y.Y. Wei, G. Eres, V.I. Merkulov, D.H. Lowndes, “Effect of catalyst film thickness on carbon nanotube growth by selective area chemical vapor deposition,” Appl.Phys.Lett., 78, 1394-1396 (2001).

     

  16. J. Han, J.B.Yoo, C.Y. Park, H-J. Kin, G.S. Park, M.Yang, I.T. Han, N. Lee, W.Yi, “Tip growth model of carbon tubules grown on the glass substrate by plasma enhanced chemical vapor deposition,” J. Appl. Phys., 91, 483-486 (2002).

     

  17. M. Chhowalla, K.B.K. Teo, C. Ducati, N.L. Rupesinghe, G.A.J. Amaratunga, A.C. Ferrari, D. Roy, J. Robertson, W.I. Milne, “Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition,” J. Appl. Phys., 90, 5308-5317 (2001).

     

  18. C.S. Cojocaru, “Synthese controlee CCVD de films de nanostructures orientees de carbon (nanotubes de carbone, etc..): Application  en l’emission de champ et au magnetisme,” Thesis, Universitey Louis Pasteur,(2003).

     

  19. M. Tanemura, K. Iwata, K. Takahashi, Y. Fujimoto, F. Okuyama, H. Sugie, V. Fillip, “Growth of aligned carbon nanotubes by plasma-enhanced chemical vapor deposition: Optimization of growth parameters,” J. Appl. Phys., 90, 1529-1533 (2001).

     

     

     

     

  20. V.I. Merkulov, A.V. Melechko, M.A. Guillorn,  H. Lowndes, M.L. Simpson, “Alignment mechanism of carbon nanofibers produced by plasma-enhanced chemical-vapor deposition,” Appl. Phys. Lett., 79, 2970-2972 (2001).

     

  21. Y.C. Choi, Y.M. Shin, S.C. Lim, D.J. Bae, Y.H. Lee, B.S. Lee, D.C. Chung, “Effect of surface morphology of Ni thin film on the growth of aligned carbon nanotubes by microwave plasma-enhanced chemical vapor deposition,” J. Appl. Phys., 88, 4898-4903 (2000).

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

  22. C.H. Lin, H.L. Chang, M.H. Tsai, C.T. Kuo, “Growth mechanism and properties of the large area well-aligned carbon nano-structures deposited by microwave plasma electron cyclotron resonance chemical vapor deposition,” Diam. and Relat. Mater., 11, 922-926 (2002).

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

Keywords

  1. H. Maeno, In “The nano-micro interface,” H.J. Fecht, M. Werner(eds), Wiley-VCH, 59-69 (2004).

     

  2. W.J. Cromie, “Carbon hits to revolutionize computer construction,”

     http://www.news.harvard.edu/gazette/2000.

     

  3. S. Iijima, “Helical microtubules of graphitic carbon,” nature, 354, 56-58 (1991).

     

  4. M. Meyyappan, L. Delzeit, A. Chassell, D. Hash, “Carbon nanotube growth by PECVD: a review,” Plasma Sources Sci. Techno., 12, 205-216 (2003).

     

  5. V.F. Mekulov, D.H. Lowndes, Y.Y. Wei, G. Eresand, E. Voelket, “Patterned growth: individual and multiple vertically carbon nanofibers,” Appl. Phys. Lett., 76, 3555-3557 (2000).

     

  6. L. Delzeit, L. McAnich, B.A. Cruden, D.H. Bchen, J. Han, M. Meyyapan, “Growth multiwall carbon nanotubes in an inductively coupled plasma reactor,” J. App. Phys., 91, 6027-6033 (2002).

     

  7. Y.R. Jeng, P.C. Tsa, T.H. Fang, “effects of temperature and vacancy defects on tensil deformation of single walled carbon nanotubes,C,” J. Appl. Phys. Chem. Solids, 65, 1849-1856 (2004).

     

  8. E.T. Thostenson, Z. Ren, T.W. Chou, “Advances in the science and technology of carbon nanotubes and their composites :a review,” Composites Science and Technology, 61, 1899-1912 (2001).

     

  9. X. Fu, H. Zhang, Y. Chen, S. Li, S. Yi, C. Zhou, M. Li, Y. Zhu, J. Chen, “The effect of carbon nanotubes on the electrochemical hydrogen storage performance of the LaNi5 rare earth alloy,” Physica, E25, 414-420 (2005).

     

  10. H. Takikawa, O. Kusano, “Graphite spot produces carbon nanotubes in arc discharge,” J. Phys. D32, 2433-2437 (1999).

     

  11. T. Ikegami, F. Nakanishi, M. Uchiyama, K. Ebihara, “Optical measurement in carbon nanotubes formation by pulsed laser ablation,” Thin Solid Films, 457, 7-11 (2004).

     

     

  12. P. Nikolaev, M.J. Bronikowski, R. Kelley, F. Rohmund, D.T. Colbert, K.A. Smith, R.E. Smalley, “Gas phase catalytic growth of single walled carbon nanotubes from carbon monoxide,” Chem. Phys. Lett., 313, 91-97 (1999).

     

  13. L. Delzeit, B. Chen, A. Chassell, R. Stevens, C.Nugent, M. Meyyappan, “Multilayered metal catalysts for controlling the density of single walled carbon nanotube growth,” Chem. Phys. Lett., 348, 368-374 (2001).

     

  14. C.M. Hsu, C.H. Lin, H.J. Lai, C.T. Kuo, “Root growth of multi wall carbon nanotubes by MPCVD,” Thin Solid Films, 471, 140-144 (2005).

     

  15. Y.Y. Wei, G. Eres, V.I. Merkulov, D.H. Lowndes, “Effect of catalyst film thickness on carbon nanotube growth by selective area chemical vapor deposition,” Appl.Phys.Lett., 78, 1394-1396 (2001).

     

  16. J. Han, J.B.Yoo, C.Y. Park, H-J. Kin, G.S. Park, M.Yang, I.T. Han, N. Lee, W.Yi, “Tip growth model of carbon tubules grown on the glass substrate by plasma enhanced chemical vapor deposition,” J. Appl. Phys., 91, 483-486 (2002).

     

  17. M. Chhowalla, K.B.K. Teo, C. Ducati, N.L. Rupesinghe, G.A.J. Amaratunga, A.C. Ferrari, D. Roy, J. Robertson, W.I. Milne, “Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition,” J. Appl. Phys., 90, 5308-5317 (2001).

     

  18. C.S. Cojocaru, “Synthese controlee CCVD de films de nanostructures orientees de carbon (nanotubes de carbone, etc..): Application  en l’emission de champ et au magnetisme,” Thesis, Universitey Louis Pasteur,(2003).

     

  19. M. Tanemura, K. Iwata, K. Takahashi, Y. Fujimoto, F. Okuyama, H. Sugie, V. Fillip, “Growth of aligned carbon nanotubes by plasma-enhanced chemical vapor deposition: Optimization of growth parameters,” J. Appl. Phys., 90, 1529-1533 (2001).

     

     

     

     

  20. V.I. Merkulov, A.V. Melechko, M.A. Guillorn,  H. Lowndes, M.L. Simpson, “Alignment mechanism of carbon nanofibers produced by plasma-enhanced chemical-vapor deposition,” Appl. Phys. Lett., 79, 2970-2972 (2001).

     

  21. Y.C. Choi, Y.M. Shin, S.C. Lim, D.J. Bae, Y.H. Lee, B.S. Lee, D.C. Chung, “Effect of surface morphology of Ni thin film on the growth of aligned carbon nanotubes by microwave plasma-enhanced chemical vapor deposition,” J. Appl. Phys., 88, 4898-4903 (2000).

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

  22. C.H. Lin, H.L. Chang, M.H. Tsai, C.T. Kuo, “Growth mechanism and properties of the large area well-aligned carbon nano-structures deposited by microwave plasma electron cyclotron resonance chemical vapor deposition,” Diam. and Relat. Mater., 11, 922-926 (2002).