In cooperation with the Iranian Nuclear Society

Characteristics Study of a Trigatron with Homo and Hetero-Polar Triggering Configurations

Document Type : Research Paper

Author

Abstract
Three electrodes spark gap (Trigatron) is widely used in the pulsed high voltage generator circuit in most of the high pressure gas lasers, such as carbon dioxide and nitrogen lasers. In this work switch parameters such as minimum breakdown voltage and switching time of a trigatron under different experimental conditions such as nitrogen gas pressure and discharge gap are investigated. The experimental results are in good agreement with other researcher's results where some of them have not been already demonstrated. The results have shown that the best condition of switching speed will be reached by using hetero-polar triggering configuration. Also, by using the hetero-polar triggering configuration the controllable operation area of switching voltage, i.e. the voltage area where the switch is not operational without triggering, is higher than homo-polar configuration.

Highlights

  1. E. Kauffel and W. S.Zaengel “High voltage engineering fundamentals,” pergamon press, chapter 2&5 (1984).

 

  1. M.A. Gundersen, “Gas-phase pulsed power switches,” IEEE.Trans.Plasma Sci., 19, 1123-1131 (1991).

     

  2. J.M. Koutsoubis, S.J. MacGregor, S.M. Turnbull, “Triggered swich performance in SF6, air, and an SF6/air mixture,” IEEE.Trans.on Plasma Science, 27, 272-281 (1999).                                              

     

  3. P.F. Willams and F.E. Peterkin, “Triggering in trigatron spark gaps:a fundamental study,” J.Appl.Phys.,  66, 4163-4175 (1989). 

     

  4. S.K. Dhali, P.F. Willams, "Two-dimensional studies of streamers in gases", J.Appl.Phys., 62, 4696-4707 (1987).

     

  5. F. Frungel, “High speed pulse technology,” Academic press, vol. 1, ch 2 (1965).

     

  6. ا. حریری، م. ترکاشوند، ف. اردوانی، ع. یراقچی، ”بررسی تجربی لیـزر ازت مولکولی که بـه طریق عرضی فعالیت می کند،“ نشریـه علمی سازمان انرژی اتمی ایران، 3، (پائیز 1362).

     

     

     

     

     

     

     

     

     

  7. M. Aram, F. Soltanmoradi, A. Behjat, “Investigation on parallel spark arry pre-ionization TEA CO2 laser,”  Proceedings SPIE, 6th Int.A.M.P.L, Tomsk,Russia, 5483, 43-50 (2003).

     

  8. R. Marcheti, E. Penco, G. Salveti, “Seasled, miniaturized, corona-preionized, high-repetition-rate TEA-CO2 laser using hydrogen buffered gas mixtures,” IEEE.J.Quantum Electron., QE-21, 1766-1771 (1985).

     

  9. S.J. MacGregor, S.M. Turnbull, F.A. Tuema, O. Farish, “Factors affecting and methods of improving the pulse repetition frequency of pulse-charged and DC-charged high-pressure gas switches,” IEEE.Trans.on Plasma Sci., 25, 110-117(1997).

 

  1. R. Tan, C. Wan, J. Qi, S. Liu, J. Zhou, W. Xie, J. Wu, “A sequential discharge TEA CO2  laser with high repetition rate and high output power,” Optics and Laser Technology, 31, 393-396 (1999).

     

  2. S. Ghoreyshi, K. Rahimian, A. Hariri, “Gain and saturation energy measurments in low pressure longitudinally excited N2-lasers,”  opt.communications, 238, 139-149 (2004).

     

  3. O.P. Judd  and J.Y. Wada, “Investigations of a UV preionized electrical discharge and CO2 laser,” IEEE.J.quantum  .Electron., QE-10, 12-20 (1974).

Keywords


  1. E. Kauffel and W. S.Zaengel “High voltage engineering fundamentals,” pergamon press, chapter 2&5 (1984).

 

  1. M.A. Gundersen, “Gas-phase pulsed power switches,” IEEE.Trans.Plasma Sci., 19, 1123-1131 (1991).

     

  2. J.M. Koutsoubis, S.J. MacGregor, S.M. Turnbull, “Triggered swich performance in SF6, air, and an SF6/air mixture,” IEEE.Trans.on Plasma Science, 27, 272-281 (1999).                                              

     

  3. P.F. Willams and F.E. Peterkin, “Triggering in trigatron spark gaps:a fundamental study,” J.Appl.Phys.,  66, 4163-4175 (1989). 

     

  4. S.K. Dhali, P.F. Willams, "Two-dimensional studies of streamers in gases", J.Appl.Phys., 62, 4696-4707 (1987).

     

  5. F. Frungel, “High speed pulse technology,” Academic press, vol. 1, ch 2 (1965).

     

  6. ا. حریری، م. ترکاشوند، ف. اردوانی، ع. یراقچی، ”بررسی تجربی لیـزر ازت مولکولی که بـه طریق عرضی فعالیت می کند،“ نشریـه علمی سازمان انرژی اتمی ایران، 3، (پائیز 1362).

     

     

     

     

     

     

     

     

     

  7. M. Aram, F. Soltanmoradi, A. Behjat, “Investigation on parallel spark arry pre-ionization TEA CO2 laser,”  Proceedings SPIE, 6th Int.A.M.P.L, Tomsk,Russia, 5483, 43-50 (2003).

     

  8. R. Marcheti, E. Penco, G. Salveti, “Seasled, miniaturized, corona-preionized, high-repetition-rate TEA-CO2 laser using hydrogen buffered gas mixtures,” IEEE.J.Quantum Electron., QE-21, 1766-1771 (1985).

     

  9. S.J. MacGregor, S.M. Turnbull, F.A. Tuema, O. Farish, “Factors affecting and methods of improving the pulse repetition frequency of pulse-charged and DC-charged high-pressure gas switches,” IEEE.Trans.on Plasma Sci., 25, 110-117(1997).

 

  1. R. Tan, C. Wan, J. Qi, S. Liu, J. Zhou, W. Xie, J. Wu, “A sequential discharge TEA CO2  laser with high repetition rate and high output power,” Optics and Laser Technology, 31, 393-396 (1999).

     

  2. S. Ghoreyshi, K. Rahimian, A. Hariri, “Gain and saturation energy measurments in low pressure longitudinally excited N2-lasers,”  opt.communications, 238, 139-149 (2004).

     

  3. O.P. Judd  and J.Y. Wada, “Investigations of a UV preionized electrical discharge and CO2 laser,” IEEE.J.quantum  .Electron., QE-10, 12-20 (1974).