Document Type : Research Paper
Authors
Highlights
[1] G.M. Gadd, C. White, Uptake and intracellular compartmentation of thorium in Saccharomyces cerevisiae, Environ. Pollut. 61 (1989) 187-197.
[2] M. Riazi, A.R. Keshtkar, M.A. Moosavian, Batch and continuous fixed-bed column biosorption of thorium (IV) from aqueous solutions: equilibrium and dynamic modeling, J. Radioanal. Nucl. Chem. 301 (2014) 493-503.
[3] T.S. Anirudhan, S. Rijith, A.R. Tharun, Adsorptive removal of thorium (IV) from aqueous solutions using poly (methacrylic acid)-grafted chitosan/bentonite composite matrix: Process design and equilibrium studies, Colloid. Surfaces A. 368 (2010) 13-22.
[4] K.C. Bhainsa, S.F. D'Souza, Thorium biosorption by Aspergillus fumigatus, a filamentous fungal biomass, J. Hazard. Mater., 165 (2009) 670-676.
[5] C. Qing, Study on the adsorption of lanthanum (III) from aqueous solution by bamboo charcoal, J. Rare Earth. 28 (2010) 125-131.
[6] M. Torab-Mostaedi, M. Asadollahzadeh, A. Hemmati, A. Khosravi, Biosorption of lanthanum and cerium from aqueous solutions by grapefruit peel: equilibrium, kinetic and thermodynamic studies, Res. Chem. Intermediat., 41 (2015) 559-573.
[7] N. Das, D. Das, Recovery of rare earth metals through biosorption: an overview, J. Rare Earth., 31 (2013) 933-943.
[8] R.C. Oliveira, C. Jouannin, E. Guibal, O. Garcia, Samarium (III) and praseodymium (III) biosorption on Sargassum sp.: batch study, Process Biochem., 46 (2011) 736-744.
[9] S. Basha, Z. Murthy, Kinetic and equilibrium models for biosorption of Cr (VI) on chemically modified seaweed, Cystoseira indica, Process Biochem., 42 (2007) 1521-1529.
[10] M. Ghasemi, A.R. Keshtkar, R. Dabbagh, S.J. Safdari, Biosorption of uranium (VI) from aqueous solutions by Ca-pretreated Cystoseira indica alga: Breakthrough curves studies and modeling, J. Hazard. Mater., 189 (2011) 141-149.
[11] S. Basha, Z. Murthy, B. Jha, Removal of Cu (II) and Ni (II) from industrial effluents by brown seaweed, Cystoseira indica, Ind. Eng. Chem. Res., 48 (2008) 961-975.
[12] G. Panda, S. Das, A. Guha, Biosorption of cadmium and nickel by functionalized husk of Lathyrus sativus, Colloid. Surfaces B. 62 (2008) 173-179.
[13] M.A. Janusa, C.A. Champagne, J.C. Fanguy, G.E. Heard, P.L. Laine, A.A. Landry, Solidification/stabilization of lead with the aid of bagasse as an additive to Portland cement, Microchem. J. 65 (2000) 255-259.
[14] Y.H. Kim, J.Y. Park, Y.J. Yoo, J.W. Kwak, Removal of lead using xanthated marine brown alga, Undaria pinnatifida, Process biochem., 34 (1999) 647-652.
[15] M. Chanda, G. Rempel, Polybenzimidazole resin based new chelating agents. Palladium (II) and platinum (IV) sorption on resin with immobilized dithiooxamide, React. polym., 12 (1990) 83-94.
[16] A.R. Keshtkar, M.A. Hassani, Biosorption of thorium from aqueous solution by Ca-pretreated brown algae Cystoseira indica, Korean J. Chem. Eng., 31 (2014) 289-295.
[17] A.R. Keshtkar, F. Kafshgari, M.A. Mousavian, Binary biosorption of uranium (VI) and nickel (II) from aqueous solution by Ca-pretreated Cystoseira indica in a fixed bed column, J. Radioanal. Nucl. Chem., 292 (2012) 501-512.
[18] A. Özer, G. Gürbüz, A. Çalimli, B.K. Körbahti, Investigation of nickel (II) biosorption on Enteromorpha prolifera: optimization using response surface analysis, J. Hazard. Mater., 152 (2008) 778-788.
[19] M. Sarkar, P. Majumdar, Application of response surface methodology for optimization of heavy metal biosorption using surfactant modified chitosan bead, Chem. Eng. J. 175 (2011) 376-387.
[20] D. Das, C.J.S. Varshini, N. Das, Recovery of lanthanum (III) from aqueous solution using biosorbents of plant and animal origin: Batch and column studies, Miner. Eng., 69 (2014) 40-56.
[21] R.H. Myers, D.C. Montgomery, C.M. Anderson-Cook, Response surface methodology: process and product optimization using designed experiments, John Wiley & Sons 705 (2009).
[22] M. Jain, V. Garg, K. Kadirvelu, Investigation of Cr (VI) adsorption onto chemically treated Helianthus annuus: optimization using response surface methodology, Bioresource technol., 102 (2011) 600-605.
[23] M. Fereidouni, A. Daneshi, H. Younesi, Biosorption equilibria of binary Cd (II) and Ni (II) systems onto Saccharomyces cerevisiae and Ralstonia eutropha cells: Application of response surface methodology, J. Hazard. Mater., 168 (2009) 1437-1448.
[24] F. Ghorbani, H. Younesi, S.M. Ghasempouri, A.A. Zinatizadeh, M. Amini, A. Daneshi, Application of response surface methodology for optimization of cadmium biosorption in an aqueous solution by Saccharomyces cerevisiae, Chem. Eng. J. 145 (2008) 267-275.
[25] Y.-S. Ho, A.E. Ofomaja, Pseudo-second-order model for lead ion sorption from aqueous solutions onto palm kernel fiber, J. Hazard. Mater., 129 (2006) 137-142.
[26] N. Chiron, R. Guilet, E. Deydier, Adsorption of Cu (II) and Pb (II) onto a grafted silica: isotherms and kinetic models, Water Res., 37 (2003) 3079-3086.
[27] I. Langmuir, The constitution and fundamental properties of solids and liquids. Part I. solids, J. Am. Chem. Soc., 38 (1916) 2221-2295.
[28] H. Freundlich, Over the adsorption in solution, J. Phys. Chem., 57 (1906) e470.
[29] M. Temkin, V. Pyzhev, Kinetics of ammonia synthesis on promoted iron catalysts, Acta physiochim. URSS 12 (1940) 217-222.
[30] V. Murphy, H. Hughes, P. McLoughlin, Cu (II) binding by dried biomass of red, green and brown macroalgae, Water Res., 41 (2007) 731-740.
[31] N. Farinella, G. Matos, E. Lehmann, M. Arruda, Grape bagasse as an alternative natural adsorbent of cadmium and lead for effluent treatment, J. Hazard. Mater., 154 (2008) 1007-1012.
[32] H.A. Hasan, S.R.S. Abdullah, N.T. Kofli, S.K. Kamarudin, Isotherm equilibria of Mn 2+ biosorption in drinking water treatment by locally isolated Bacillus species and sewage activated sludge, J. Environ. Manage., 111 (2012) 34-43.
Keywords