In cooperation with the Iranian Nuclear Society

Document Type : Research Paper

Authors

Abstract

: An oscillator-amplifire system consists of a corona-preionized N2-laser operating at intermediate up to atmospheric gas pressure, and a long channel N2 laser operating at low gas pressure was built and studied. When a special design of a low impedance spark gap in a flat-plate Blumlein circuit was utilized, the laser was able to operate at pulse repetition rate of 150 Hz. At this operational condition the average output power of the system was 30 mW which corresponds to 400 kW peak power with the FWHM pulse width of 5 ns. The experimental results showed that long channel N2-lasers will improve the laser output beam, but due to the self-absorption the small signal gain and the laser saturation energy density will be reduced. The technique can be applied to couple and synchronize other self-terminating laser systems, where the use of optical resonators are impractical.

Highlights

1.  H. Strohwald and Salzman, “Picosecond uv laser pulses from gas discharges in pure nitrogen at pressures up to 6 atm,” Appl. phys. Lett. 28, 272-274 (1976).

 

2.   I. Santa, S. Szatmari. B. Nemet, J. Hebling, “Investigation of TEA-TE nitrogen laser system,” Opt. Commun. 41, 59-60 (1982).                                                                                                                                                                               

 

3.   I. Santa, L. Kozma, B. Racz, “Investigation of atmospheric and low-pressure nitrogen laser amplifire,” Sov. J. Quantum Electron. 15, 533-536 (1985).

 

  1. 4.      T. Jitsuno, “A multi-stage TEA N2 laser,” J. phys. D: Appl. phys. 13, 1405-1411 (1980).

 

5. K. Kagawa, H. Kobayashi, M. Ishikane, “Oscillator-amplifire system in N2 laser using the pressure dependent formative time-lag of discharge,” Jpn. J. Appl. phys. 18, 2187-2188 (1979).

 

6.   F.Docchio, V.Magni, R. Ramponi, “Thyratron-switched N2 atmospheric-pressure oscillator, low-pressure amplifier laser system,” Rev. Sci Instrum. 55, 477-481 (1984).

 

7.  A. A. Serafetinides and G. N. Tsikrikas, “A semiconductively preionised TEA nitrogen Oscillator-amplifier laser system,” Opt. Commun. 79, 448-454 (1990).

 

  1. 8.      D. H. Kalantar, D. A. Hammer, A. W. De Silva, “Nitrogen laser system for diagnosing Z-pinch and X-pinch plasmas,” Rev. Sci. Instrum. 68, 2725-2729 (1997).

 

  1. 9.      A. Hariri, M. Tarkashvand, A. Karami, “Corona-preionized nitrogen laser with variable pulse width,” Rev. Sci. Instrum. 61, 1408-1412 (1990).

 

  1. 10.  A. H. Farahbod and A. Hariri, “Application of generalized self-filtering unstable resonators to a N2-laser pumped dye laser,” Opt. Commun. 108,84-90 (1994).

 

  1. 11.  W.Koechner, “Solid-State Laser Engineering,” Springer-Verlag, NY (1996).

 

 

Keywords

  1. 1.  H. Strohwald and Salzman, “Picosecond uv laser pulses from gas discharges in pure nitrogen at pressures up to 6 atm,” Appl. phys. Lett. 28, 272-274 (1976).

     

    2.   I. Santa, S. Szatmari. B. Nemet, J. Hebling, “Investigation of TEA-TE nitrogen laser system,” Opt. Commun. 41, 59-60 (1982).                                                                                                                                                                               

     

    3.   I. Santa, L. Kozma, B. Racz, “Investigation of atmospheric and low-pressure nitrogen laser amplifire,” Sov. J. Quantum Electron. 15, 533-536 (1985).

     

    1. 4.      T. Jitsuno, “A multi-stage TEA N2 laser,” J. phys. D: Appl. phys. 13, 1405-1411 (1980).

     

    5. K. Kagawa, H. Kobayashi, M. Ishikane, “Oscillator-amplifire system in N2 laser using the pressure dependent formative time-lag of discharge,” Jpn. J. Appl. phys. 18, 2187-2188 (1979).

     

    6.   F.Docchio, V.Magni, R. Ramponi, “Thyratron-switched N2 atmospheric-pressure oscillator, low-pressure amplifier laser system,” Rev. Sci Instrum. 55, 477-481 (1984).

     

    7.  A. A. Serafetinides and G. N. Tsikrikas, “A semiconductively preionised TEA nitrogen Oscillator-amplifier laser system,” Opt. Commun. 79, 448-454 (1990).

     

    1. 8.      D. H. Kalantar, D. A. Hammer, A. W. De Silva, “Nitrogen laser system for diagnosing Z-pinch and X-pinch plasmas,” Rev. Sci. Instrum. 68, 2725-2729 (1997).

     

    1. 9.      A. Hariri, M. Tarkashvand, A. Karami, “Corona-preionized nitrogen laser with variable pulse width,” Rev. Sci. Instrum. 61, 1408-1412 (1990).

     

    1. 10.  A. H. Farahbod and A. Hariri, “Application of generalized self-filtering unstable resonators to a N2-laser pumped dye laser,” Opt. Commun. 108,84-90 (1994).

     

    1. 11.  W.Koechner, “Solid-State Laser Engineering,” Springer-Verlag, NY (1996).