[1] K.S. Anderson, R. Betti, P.W. McKenty, T.J.B. Collins, M. Hohenberger, W. Theobald, R.S. Craxton, J.A. Delettrez, M. Lafon, J.A. Marozas, R. Nora, S. Skupsky, A. Shvydky, A polar-drive shock-ignition design for the National Ignition Facility, Phys. Plasma, 20 (2013) 056312.
[2]. R. Betti, C.D. Zhou, K.S. Anderson, L.J. Perkins, W. Theobald, A.A. Solodov, Shock ignition of thermonuclear fuel with high areal density, Phys. Rev. Lett., 98 (2007) 155001.
[3] M. Lafon, X. Ribeyre, G. Schurtz, Gain curves and hydrodynamic modeling for shock ignition, Phys. Plasma, 17 (2010) 052704.
[4] O. Klimo, S. Weber, V.T. Tikhonchuk, J. Limpouch, Particle-in-cell simulations of laser–plasma interaction for the shock ignition scenario, Plasma Phys. Control. Fusion, 52 (2010) 055013.
[5] X. Ribeyre, G. Schurtz, M. Lafon, S. Galera, S. Weber, Shock ignition: an alternative scheme for HiPER, Plasma Phys. Control. Fusion, 51 (2009) 015013.
[6] R. Ramis, J. Meyer-ter-Vehn, J. Ramirez, MULTI2D a computer code for two-dimensional radiation hydrodynamics, Computer Physics Communications, 180 (2009) 977.
[7] S. Atzeni, A. Schiavi, C. Bellei, Targets for direct-drive fast ignition at total laser energy of 200–400 kJ, Phys. Plasmas, 14 (2007) 052702.
[8] S. Atzeni, A. Schiavi, A. Marocchino, Studies on the robustness of shock-ignited laser fusion targets, Plasma Phys. Control. Fusion, 53 (2011) 035010.
[9] S. Atzeni, A. Schiavi, F. Califano, F. Cattani, F. Cornolti, D. Del Sarto, T.V. Liseykina, A. Macchi, F. Pegoraro, Fluid and kinetic simulation of inertial confinement fusion plasmas, Comput. Phys. Commun., 169 (2005) 153.
[10] A.H. Farahbod, S.A. Ghasemi, Fast-shock igniition: a new approach to inertial confinement fusion, IJPR, 12 (4) (2013) 347.