[1] J. Buongiorno, B. Truong, Preliminary study of water-based nanofluid coolants for PWRs, Trans. Am. Nucl. Soc., 92 (2005) 383-384.
[2] J. Buongiorno, L.W. Hu, S.J. Kim, R. Hannink, B. Truong, E. Forrest, Nanofluids for enhanced economics and safety of nuclear reactors: An evaluation of the potential features, Issues and Research Gaps. Nucl. Technol., 162 (2008) 80-91.
[3] J. Buongiorno, L.W. Hu, G. Apostolakis, R. Hanninka, T. Lucasa, A. Chupin, A feasibility assessment of the use of nanofluids to enhance the in-vessel retention capability in light-water reactors, Nucl. Eng. Des. 239(5) (2009) 941-948.
[4] K. Hadad, A. Hajizadeh, K. Jafarpour, B.D. Ganapo, Neutronic study of nanofluids application to VVER-1000, Ann. Nucl. Energy, 37 (2010) 1447–1455.
[5] E. Zarifi, G. Jahanfarnia, F. Veisy, Neutronic Analysis of Nanofluids as a Coolant in Bushehr VVER-1000 Reactor, Nukleonika, 52(3) (2012) 375-381.
[6] E. Zarifi, G. Jahanfarnia, F. Veisy, Neutronic simulation of water-based Nanofluids as a Coolant in VVER-1000 Reactor, Progress in Nuclear Energy, 65 (2013 b) 32-41.
[7] M. Nazififard, M. Nematollahi, K. Jafarpur, K.Y. Suh, Numerical Simulation of Water-Based Alumina Nanofluid in Subchannel Geometry, Science and Technology of Nuclear Installations, 928406 (2012).
[8] E. Zarifi, G. Jahanfarnia, F. Veisy, Subchannel Analysis of Nanofluids Application to VVER-1000 Reactor, Chemical Engineering Research and Design, 91(4) (2013 c) 625-632.
[9] E. Zarifi, G. Jahanfarnia, F. Veisy, Thermal-hydraulic modeling of nanofluids as the coolant in VVER-1000 reactor core by the porous media approach, Annals of Nuclear Energy, 51 (2013 a) 203-212.
[10] E. Zarifi, G. Jahanfarnia, Subchannel analysis of TiO2 nanofluid as the coolant in VVER-1000 reactor, Progress in Nuclear Energy, 73 (2014) 140-152.
[11] O. Safarzadeh, A.S. Shirani, A. Minuchehr, F. Saadatian-derakhshandeh, Coupled neutronic/ thermo-hydraulic analysis of water/Al2O3 nanofluids in a VVER-1000 reactor, Annals of Nuclear Energy, 65 (2014) 72-77.
[12] NEA, NEA-1507, WIMSD-5B (98/11), Deterministic Multi-group Reactor Lattice Calculations (1999).
[13] T.B. Fowler, CITATION-LDI2 Nuclear Reactor Core Analysis Code System, CCC-643, Oak Ridge National Laboratory, Oak Ridge, Tennessee (1999).
[14] US DOE, Nuclear Energy Research Advisory Committee and the Generation ІV International Forum, a Technology Roadmap for the G. ІV Nuclear Energy System (2002).
[15] X. Cheng, Design analysis of core assemblies for supercritical pressure conditions Nucl, Eng. Des., 223 (2003) 279-294.
[16] D. Squarer, T. Schulenberg, D. Struwe, Y. Oka, D. Bittermann, N. Aksan, C. Maráczy, R. Kyrki-Rajamäki, A. Souyri, P. Dumaz, High performance light water reactor, Nucl. Eng. Des., 221 (2003) 167–180.
[17] V. Velagapudi, R.K. Konijeti, C.S. Aduru, Empirical correlation to predict thermo-physical and heat transfer characteristics of nanofluids, Themal Science, 12(2) (2008) 27-37.
[18] J.J. Duderstadt, L.J. Hamilton, Nuclear Reactor Analysis, John Wiley & Sons Inc (1976).
[19] S. Tashakora, A.A. Salehia, G. Jahanfarnia, A. Abbaspour Tehrani Fard, Neutronic analysis of HPLWR fuel assembly cluster, Annals of Nuclear Energy, 50 (2012) 38-43.
[20] Y. Oka, S. Koshizuka, Y. Ishiwatari, A. Yamaji, Super light water reactors and super fast reactors, Supercritical-Pressure Light Water Cooled Reactors, Springer Science+Business Media (2010).