In cooperation with the Iranian Nuclear Society

Describing VVER-1000 reactors fuel rod performance in the normal operation and high burn-up conditions

Document Type : Research Paper

Author

Abstract
The main purpose of the work is to develop a valid physical model and an accurate numerical technique to describe the occurred phenomenon of the VVER-1000 fuel rod, during its lifetime, especially for high burn up conditions. There are many factors involved in the fuel rod performance, which each of them, intricately affect its behavior during normal operation. The accurate prediction of the fuel behavior is obligatory and will be utilizable for the fuel designers. In geneval, fuel rod behavior is affected by the various chemical, mechanical, and thermo neutronic phenomena. For a detailed assessment of the fuel behavior inside the reactor core, the mentioned factors and the dominant aspects must be modeled accurately. The physical models and correlations used in this paper, are chosen in such a way that all the simulation results be in a good agreement with the available post-irradiation examination data (PIE) and outputs of the FRAPCON-3.3 fuel rod performance code.

Highlights

  1. IAEA, Analysis of differences in fuel safety criteria for WWER and western PWR nuclear power plants / TECDOC-1381, (2003).

  2. G.A. Berna, G.A. Beyer, K.L. Davis, D.D. Lanning, FRAPCON-3: A computer code for the calculation of steady-state, thermal-mechanical behavior of oxide fuel rods for high burnup, (1997).

  3. K. Lassmann, TRANSURANUS: a fuel rod analysis code ready for use, J. Nucl. Mater., 188, 295–302 (1992).

  4. [4]     U.Ê. Bibilashvily, À.V. Medvedev, S.Ì. Bogatyr, V.I. Kouznetsov, G.À. Khvostov, START-3 code gap conductance modelling, Therm. Perform. High Burn. LWR Fuel., 369 (1998).

  5. K.A. Terrani, D. Wang, L.J. Ott, R.O. Montgomery, J. Nucl. Mater., 448, 512-519 (2014).

  6. P.E. MacDonald, J.M. Broughton, Cracked pellet gap conductance model: comparison of frap-s calculations with measured fuel centerline temperatures, (1975).

  7. N.E. Todreas, M.S. Kazimi, Nuclear systems I: Thermal Hydraulic Fundamentals, Taylor & Francis, (1990).

  8. A.M. Ross, R.L. Stoute, Heat transfer coefficient between UO2 and Zircaloy-2, AECL-1552., (1962).

  9. K. Lassmann, F. Hohlefeld, Nucl. Eng. Des., 103, 215-221 (1987).

  10. K.J. Geelhood, W.G. Luscher, FRAPCON-3.5: A Computer Code for the Calculation of Steady-State, Thermal-Mechanical Behavior of Oxide Fuel Rods for High Burnup, (2014).

  11. Russia Federal Agency on Nuclear Energy, Bushehr NPP Final Safety Analysis Report, Moscow, (2003).

  12. K.J. Geelhood, W.G. Luscher, FRAPCON-4: A Computer Code for the Calculation of Steady-State, Thermal-Mechanical Behavior of Oxide Fuel Rods for High Burnup, 1 (2015).

  13. F.W. Dittus, L.M.K. Boelter, Heat transfer in automobile radiators of the tabular type, University of California, (1930).

  14. K. Ohira, N. Itagaki, Thermal conductivity measurements of high burnup UO2 pellet and a benchmark calculation of fuel center temperature, in: Proc. Am. Nucl. Soc. Meet. Light Water React. Fuel Performance, Portland, Oregon, 541 (1997).

  15. S.P.S. Badwal, Materials for solid oxide fuel cells, (1997).

  16. F.B. Tas, S. Ergun, Energy Convers. Manag., 72, 88–93 (2013).

  17. F. Kreith, R.M. Manglik, M.S. Bohn, Principles of Heat Transfer, (2011).

  18. IAEA, Advanced Fuel Pellet Materials and Designs for Water Cooled Reactors/TECDOC-1416, Tech. Comm. Meet. Held Brussels., (2004) 329.

 

 

  1. D.L. Hagrman, G.A. Reymann, MATPRO-VERSION 11: a handbook of materials properties for use in the analysis of light water reactor fuel rod behavior, (1979).

  2. L.E. Herranz, A. Tigeras, Prog. Nucl. Energy., 52, 435–441 (2010).

  3. J.E. Garnier, S. Begej, A.O. Desjarlais, R.P. Tye, Ex-Reactor Determination of Thermal Gap Conductance between Uranium Dioxide:Zircaloy-4 Interfaces, in: D.C. Larsen (Ed.), Therm. Conduct. 16, Springer US, Boston, MA, 211–219 (1983).

  4. P.E. Macdonald, R.H. Smith, Nucl. Eng. Des., 61, 163-177 (1980).

  5. C.M. Allison, G.A. Berna, R. Chambers, E.W. Coryell, K.L. Davis, D.L. Hagrman, D.T. Hagrman, N.L. Hampton, J.K. Hohorst, R.E. Mason, M.L. McComas, SCDAP/RELAP5/MOD3. 1 code manual, VOLUME I: CODE STRUCTURE, SYSTEM MODELS, AND SOLUTION METHODS, DT Hagrman, NUREG/CR-6150, EGG-2720., 1 (1993) 4–234.

  6. K.E. Carlson, R.A. Riemke, S.Z. Rouhani, R.W. Shumway, W.L. Weaver, RELAP5/MOD3 Code Manual Volume I: Code Structure, System Models and Solution Methods, US NRC NUREG/CR-5535, Washingt. (DC, USA) June., (1990).

  7. W.G. Luscher, K.J. Geelhood, Material Property Correlations: Comparisons between FRAPCON-4.0, FRAPTRAN 2.0, and MATPRO, (2015).

  8. M.J.F. Notley, I.J. Hastings, Nucl. Eng. Des., 56, 163–175 (1980).

  9. L.O. Jernkvist, A.R. Massih, Analysis of the effect of UO2 high burnup microstructure on fission gas release, Ski Rep., 2, 56 (2002).

 

Keywords


  1. IAEA, Analysis of differences in fuel safety criteria for WWER and western PWR nuclear power plants / TECDOC-1381, (2003).

  2. G.A. Berna, G.A. Beyer, K.L. Davis, D.D. Lanning, FRAPCON-3: A computer code for the calculation of steady-state, thermal-mechanical behavior of oxide fuel rods for high burnup, (1997).

  3. K. Lassmann, TRANSURANUS: a fuel rod analysis code ready for use, J. Nucl. Mater., 188, 295–302 (1992).

  4. [4]     U.Ê. Bibilashvily, À.V. Medvedev, S.Ì. Bogatyr, V.I. Kouznetsov, G.À. Khvostov, START-3 code gap conductance modelling, Therm. Perform. High Burn. LWR Fuel., 369 (1998).

  5. K.A. Terrani, D. Wang, L.J. Ott, R.O. Montgomery, J. Nucl. Mater., 448, 512-519 (2014).

  6. P.E. MacDonald, J.M. Broughton, Cracked pellet gap conductance model: comparison of frap-s calculations with measured fuel centerline temperatures, (1975).

  7. N.E. Todreas, M.S. Kazimi, Nuclear systems I: Thermal Hydraulic Fundamentals, Taylor & Francis, (1990).

  8. A.M. Ross, R.L. Stoute, Heat transfer coefficient between UO2 and Zircaloy-2, AECL-1552., (1962).

  9. K. Lassmann, F. Hohlefeld, Nucl. Eng. Des., 103, 215-221 (1987).

  10. K.J. Geelhood, W.G. Luscher, FRAPCON-3.5: A Computer Code for the Calculation of Steady-State, Thermal-Mechanical Behavior of Oxide Fuel Rods for High Burnup, (2014).

  11. Russia Federal Agency on Nuclear Energy, Bushehr NPP Final Safety Analysis Report, Moscow, (2003).

  12. K.J. Geelhood, W.G. Luscher, FRAPCON-4: A Computer Code for the Calculation of Steady-State, Thermal-Mechanical Behavior of Oxide Fuel Rods for High Burnup, 1 (2015).

  13. F.W. Dittus, L.M.K. Boelter, Heat transfer in automobile radiators of the tabular type, University of California, (1930).

  14. K. Ohira, N. Itagaki, Thermal conductivity measurements of high burnup UO2 pellet and a benchmark calculation of fuel center temperature, in: Proc. Am. Nucl. Soc. Meet. Light Water React. Fuel Performance, Portland, Oregon, 541 (1997).

  15. S.P.S. Badwal, Materials for solid oxide fuel cells, (1997).

  16. F.B. Tas, S. Ergun, Energy Convers. Manag., 72, 88–93 (2013).

  17. F. Kreith, R.M. Manglik, M.S. Bohn, Principles of Heat Transfer, (2011).

  18. IAEA, Advanced Fuel Pellet Materials and Designs for Water Cooled Reactors/TECDOC-1416, Tech. Comm. Meet. Held Brussels., (2004) 329.

 

 

  1. D.L. Hagrman, G.A. Reymann, MATPRO-VERSION 11: a handbook of materials properties for use in the analysis of light water reactor fuel rod behavior, (1979).

  2. L.E. Herranz, A. Tigeras, Prog. Nucl. Energy., 52, 435–441 (2010).

  3. J.E. Garnier, S. Begej, A.O. Desjarlais, R.P. Tye, Ex-Reactor Determination of Thermal Gap Conductance between Uranium Dioxide:Zircaloy-4 Interfaces, in: D.C. Larsen (Ed.), Therm. Conduct. 16, Springer US, Boston, MA, 211–219 (1983).

  4. P.E. Macdonald, R.H. Smith, Nucl. Eng. Des., 61, 163-177 (1980).

  5. C.M. Allison, G.A. Berna, R. Chambers, E.W. Coryell, K.L. Davis, D.L. Hagrman, D.T. Hagrman, N.L. Hampton, J.K. Hohorst, R.E. Mason, M.L. McComas, SCDAP/RELAP5/MOD3. 1 code manual, VOLUME I: CODE STRUCTURE, SYSTEM MODELS, AND SOLUTION METHODS, DT Hagrman, NUREG/CR-6150, EGG-2720., 1 (1993) 4–234.

  6. K.E. Carlson, R.A. Riemke, S.Z. Rouhani, R.W. Shumway, W.L. Weaver, RELAP5/MOD3 Code Manual Volume I: Code Structure, System Models and Solution Methods, US NRC NUREG/CR-5535, Washingt. (DC, USA) June., (1990).

  7. W.G. Luscher, K.J. Geelhood, Material Property Correlations: Comparisons between FRAPCON-4.0, FRAPTRAN 2.0, and MATPRO, (2015).

  8. M.J.F. Notley, I.J. Hastings, Nucl. Eng. Des., 56, 163–175 (1980).

  9. L.O. Jernkvist, A.R. Massih, Analysis of the effect of UO2 high burnup microstructure on fission gas release, Ski Rep., 2, 56 (2002).