In cooperation with the Iranian Nuclear Society

Single longitudinal mode operation of a 3 atm pulsed CO2 laser with hybrid method

Document Type : Research Paper

Authors

Abstract
In this work, the hybrid configuration was used to produce the single longitudinal mode operation of pulsed CO2 laser with 14 cm long active volume at the pressure 3 atm. For this resean, a low pressure continuous wave CO2 laser with 120 cm long active volume is used. It was found that the emitted pulses of the system exhibit single mode behavior in above threshold condition and also at the pressures up to 7 mbar below threshold condition. To characterize the system performance, various parameters of the single mode pulses at different pressures and powers of the continuous wave laser were analyzed. Furthermore, the threshold pressure of the continuous wave laser for the single mode operation was obtained at about 9.5 mbar. It is shown that in both above and below threshold conditions, the single mode pulses have higher durations and rise times and also lower build- up times.

Highlights

 

  1. O. Svelto, Principles of Lasers, 5th Ed., Springer-Verlag, (2010).

  2. M. Endo, Gas Lasers, Taylor and Francis Group, USA, (2007).

  3. J. Badziak, R. Jarocki, Optics and Laser Technology 23, 45-49 (1991).

  4. J. Knitel, D. P. Scherrer, F. K. Kneubuhl, Infrared Physics Technology 35, 67-71 (1994).

  5. S. Marchetti, R. Simili, Optics and Laser Technology 35, 583-586 (2003).

  6. D.J. Biswas, R. G. Harrison, Journal of Physics E 18, 256-257 (1985).

  7. F. Bonanni, S. Ciferri, G. Salvetti, Optical and Quantum Electronics 14, 237-243 (1982).

  8. N.R. Heckenberg, J. Meyer, Optical Communication 16, 54-56 (1976).

  9. S. Tochitsky, F. Fuza, C. Joshi, AIP Conf. Proc. 1777, 020005-1–020005-10, (2014).

  10. S.L. Chin, Optics & Laser Technology 12, 85-88 (1980).

  11. D.J. Biswas, A. K. Nath, U. Nundy, U. K. Chatterjiee, Progress in Quantum Electronics 14, 1-61 (1990).

  12. W. Demtroder, Laser Spectroscopy, 4th Ed., Vol. 1, Springer-Verlag, (2008).

  13. A.K. Kar, D.M. Tratt, R. G. Harrison, Optical Communication 43, 274-276  (1982).

  14. J.R. Izatt. C. J. Budhiraja, P. Mathieu, IEEE Journal of Quantum Electronics 13, 396-398 (1977).

  15. J.L. Lachamber, P. Lavigne, G. Otis, M. Noel, IEEE Journal of Quantum Electronics 12, 756-764 (1976).

  16. K. Silakhori, F. Soltanmoradi, A. Behjat, M. Montazerolghaem, S. M. R. Sadr, Nuclear Science and Technology 32, 9-14 (2005).

  17. M. Ouhayoun, C.J. Bordé, Metrologia 13, 149-150 (1977).

Keywords


  1.  

    1. O. Svelto, Principles of Lasers, 5th Ed., Springer-Verlag, (2010).

    2. M. Endo, Gas Lasers, Taylor and Francis Group, USA, (2007).

    3. J. Badziak, R. Jarocki, Optics and Laser Technology 23, 45-49 (1991).

    4. J. Knitel, D. P. Scherrer, F. K. Kneubuhl, Infrared Physics Technology 35, 67-71 (1994).

    5. S. Marchetti, R. Simili, Optics and Laser Technology 35, 583-586 (2003).

    6. D.J. Biswas, R. G. Harrison, Journal of Physics E 18, 256-257 (1985).

    7. F. Bonanni, S. Ciferri, G. Salvetti, Optical and Quantum Electronics 14, 237-243 (1982).

    8. N.R. Heckenberg, J. Meyer, Optical Communication 16, 54-56 (1976).

    9. S. Tochitsky, F. Fuza, C. Joshi, AIP Conf. Proc. 1777, 020005-1–020005-10, (2014).

    10. S.L. Chin, Optics & Laser Technology 12, 85-88 (1980).

    11. D.J. Biswas, A. K. Nath, U. Nundy, U. K. Chatterjiee, Progress in Quantum Electronics 14, 1-61 (1990).

    12. W. Demtroder, Laser Spectroscopy, 4th Ed., Vol. 1, Springer-Verlag, (2008).

    13. A.K. Kar, D.M. Tratt, R. G. Harrison, Optical Communication 43, 274-276  (1982).

    14. J.R. Izatt. C. J. Budhiraja, P. Mathieu, IEEE Journal of Quantum Electronics 13, 396-398 (1977).

    15. J.L. Lachamber, P. Lavigne, G. Otis, M. Noel, IEEE Journal of Quantum Electronics 12, 756-764 (1976).

    16. K. Silakhori, F. Soltanmoradi, A. Behjat, M. Montazerolghaem, S. M. R. Sadr, Nuclear Science and Technology 32, 9-14 (2005).

    17. M. Ouhayoun, C.J. Bordé, Metrologia 13, 149-150 (1977).