In cooperation with the Iranian Nuclear Society

Theoretical investigation of the behavior of spherical ion- acoustic solitons in two-temperature plasma

Document Type : Research Paper

Authors

Abstract
The propagation of the small amplitude ion-acoustic solitary waves (IASWs) is studied in a plasma containing cold fluid ions and multi-temperature electrons (cool and hot electrons) with the nonextensive distribution. In this paper, we were firstly written a set of fluid equations in the spherical geometry. Then, spherical Korteweg–de Vries (KdV) equation was derived using a reductive perturbation method. The obtained spherical Korteweg–de Vries equation was solved using a homotopy perturbation method (HPM). Furthermore, the impact of the electron nonextensivity, the density ratio of electrons and ions and the temperature ratio on the characteristics of ion- acoustic solitary waves were studied. The analytical results show that a decrease in the electron nonextensivity increases the soliton ion- acoustic width. On the other word, it was observed that a reduction in the nonextensivity parameter increases the nonlinear coefficient of the KdV equation.

Highlights

 

 

  1. N.S. Saini, Shalini, Astrophys. Space Sci. 346,  155, (2013).

  2. H. Ikezi, Phys. Fluids 16, 1668 (1973).

  3. H. Ikezi, K.E. Lonngren, Phys. Lett. A 42, 29 (1972).

  4. R.J. Taylor, K.R. Mckenzie, H. Ikezi, Rev. Sci. Instrum. 43, 1675 (1972).

  5. N. Asano, T. Taniuti, N. Yajima, J. Astrophys, 10, 2020 (1969).

  6. H. Washimi, T. Taniuti, Phys. Rev. Lett., 17, 996 (1966).

  7. D.D. Barbosa, W.S. Kurth, J. Geophys, Res. 98, 9351 (1993).

  8. E.C.J. Sittler, K.W. Ogilvie, J.D. Scudder, J. Geophys, Res., 88, 8874 (1983).

  9. B. Buti, Phys. Lett. A 76, 251 (1980).

  10.  W.F. El-Taibany, M. Tribeche, Phys. Plasmas 19, 024507 (2012).

  11.  A. Nazari-Golshan, Phys. Plasmas., 23, 082109 (2016).

  12.  R.A. Cairns, A.A. Mamun, R. Bingham, R. Bostrom, R.O. Dendy, C.M.C. Nairn, P.K. Shukla, Geophys. Res. Lett., 22, 2709 (1995).

  13.  J.R. Franz, P.M. Kintner, J.S. Pickett, Geophys. Res. Lett., 25, 1277 (1998).

  14.  J.E. Williams, J.L. Cooney, D.W. Aossey, K.E. Lonngren, Phys. Rev. A 45, 5897 (1992).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1.  M. Tribeche, L. Djebarni, Phys. Plasmas., 17, 124502 (2010).

  2.  R. Amour, M. Tribeche, Phys. Plasmas., 17,  063702 (2010).

  3.  G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method (Kluwer, Boston, (1994).

  4.  A.M. Wazwaz, Partial Differential Equation and Solitary Wave Theory Nonlinear Physical Science, Springer (2010).

  5.  S.S. Nourazar, A. Nazari-Golshan, A. Yildirim, M. Nourazar, Z. Naturforsch, A 67, 355 (2012).

  6.  A. Nazari-Golshan, S.S. Nourazar, P. Parvin, H. Ghafoori-Fard, Astrophys. Space Sci., 349, 205 (2014).

  7.  S.S. Nourazar, M. Soori, A. Nazari-Golshan, Aus. J. Basic Appl. Sci., 5, 8, 1400 (2011).

  8.  A. Nazari-Golshan, S.S. Nourazar, H. Ghafoori-Fard, A. Yildirim, A. Campo, Appl. Math. Lett., 26, 1018 (2013).

  9.  S.S. Nourazar, A. Nazari-Golshan, Indian J. Phys., 89, 1, 61 (2015).

  10.  J.H. He, Commun. Nonlinear Sci. Numer. Simul., 2,  230 (1997).

Keywords


  1.  

     

    1. N.S. Saini, Shalini, Astrophys. Space Sci. 346,  155, (2013).

    2. H. Ikezi, Phys. Fluids 16, 1668 (1973).

    3. H. Ikezi, K.E. Lonngren, Phys. Lett. A 42, 29 (1972).

    4. R.J. Taylor, K.R. Mckenzie, H. Ikezi, Rev. Sci. Instrum. 43, 1675 (1972).

    5. N. Asano, T. Taniuti, N. Yajima, J. Astrophys, 10, 2020 (1969).

    6. H. Washimi, T. Taniuti, Phys. Rev. Lett., 17, 996 (1966).

    7. D.D. Barbosa, W.S. Kurth, J. Geophys, Res. 98, 9351 (1993).

    8. E.C.J. Sittler, K.W. Ogilvie, J.D. Scudder, J. Geophys, Res., 88, 8874 (1983).

    9. B. Buti, Phys. Lett. A 76, 251 (1980).

    10.  W.F. El-Taibany, M. Tribeche, Phys. Plasmas 19, 024507 (2012).

    11.  A. Nazari-Golshan, Phys. Plasmas., 23, 082109 (2016).

    12.  R.A. Cairns, A.A. Mamun, R. Bingham, R. Bostrom, R.O. Dendy, C.M.C. Nairn, P.K. Shukla, Geophys. Res. Lett., 22, 2709 (1995).

    13.  J.R. Franz, P.M. Kintner, J.S. Pickett, Geophys. Res. Lett., 25, 1277 (1998).

    14.  J.E. Williams, J.L. Cooney, D.W. Aossey, K.E. Lonngren, Phys. Rev. A 45, 5897 (1992).

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    1.  M. Tribeche, L. Djebarni, Phys. Plasmas., 17, 124502 (2010).

    2.  R. Amour, M. Tribeche, Phys. Plasmas., 17,  063702 (2010).

    3.  G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method (Kluwer, Boston, (1994).

    4.  A.M. Wazwaz, Partial Differential Equation and Solitary Wave Theory Nonlinear Physical Science, Springer (2010).

    5.  S.S. Nourazar, A. Nazari-Golshan, A. Yildirim, M. Nourazar, Z. Naturforsch, A 67, 355 (2012).

    6.  A. Nazari-Golshan, S.S. Nourazar, P. Parvin, H. Ghafoori-Fard, Astrophys. Space Sci., 349, 205 (2014).

    7.  S.S. Nourazar, M. Soori, A. Nazari-Golshan, Aus. J. Basic Appl. Sci., 5, 8, 1400 (2011).

    8.  A. Nazari-Golshan, S.S. Nourazar, H. Ghafoori-Fard, A. Yildirim, A. Campo, Appl. Math. Lett., 26, 1018 (2013).

    9.  S.S. Nourazar, A. Nazari-Golshan, Indian J. Phys., 89, 1, 61 (2015).

    10.  J.H. He, Commun. Nonlinear Sci. Numer. Simul., 2,  230 (1997).