Document Type : Research Paper
Authors
Highlights
[1] J.T. Bush Berg, J.A. Seibert, E.M. Leidholdt, J.M. Boone, The essential physics of medical imaging, Lippincott Williams & wilkins Press, 3th Edition, (2012).
[2] E. Asma, R. Manjeshwar, Evaluation of the impact of resolution-sensitivity tradeoffs on detection performance for SPECT imaging 2008 IEEE. Nucl. Sci. Symp., (2008) 3730-33.
[3] G. Trinci, R. Massari, M. Scandellari, S. Boccalini, A. Costantini, R. DiSero, A. Basso, R. Sala, F. Scopinaro, A. Soluri, A new variable parallel holes collimator for scintigraphic device with validation method based on Monte Carlo simulations, Nucl. Instrum. Methods, A621 (2010) 406-412.
[4] S. Mahmood, K. Erlandsson, I. Cullum, B. Hutton,Design of a novel slit-slat collimator system for SPECT imaging of the human brain Phys. Med. Biol, 54 (2009) 3433-3450.
[5] S.D. Metzler, R. Accorsi, S. Ayan, R.J. Jaszczak, Slit-slat and multi slit-slat collimator design and experimentally acquired phantom images from a rotating prototype, IEEE Trans. Nucl. Sci., 57 (2010) 125-134.
[6] A. Khorshidi, M. Ashoor, Modulation transfer function assessment in parallel and fan beam collimator with square and cylindrical holes, Ann. Nucl. Med., 28 (2014) 59-66.
[7] A. Khorshidi, M. Ashoor, S.H. Hosseini, A. Rajaee, Evaluation of collimators' response: Round and hexagonal holes in parallel and fan beam, Progress in Biophysics and Molecular Biology, 109 (2012) 59-66.
[8] T. Yong Song, Y. Choi, Y.H. Chung, J.H. Jung, Y. Seong Choe, K. Han Lee, S. Eun Kim, B. Tae Kim, Optimization of pinhole collimator for small animal SPECT using Monte Carlo simulation IEEE Trans. Nucl. Sci., 50 (2003) 327-332.
[9] D. Lowe, A. Truman, H. Kwok, A. Bergman, Optimisation of the design of round-hole parallel collimators for ultra-compact nuclear medicine imaging, Nucl. Instrum. Methods, A., 621 (2002) 406-412.
[10] V. Moslemi, M. Ashoor, Design and performance evaluation of a new high energy parallel hole collimator for radioiodine planar imaging by gamma cameras: Monte Carlo simulation study, Ann. Nucl. Med., (2017) DOI:10.1007/s 12149-017-1160-9.
[11] B. Zhang, G.L. Zeng, High-resolution versus high-sensitivity SPECT imaging with geometric blurring compensation for various parallel-hole collimation geometries, IEEE Trans. Inf. Technol. Biomed., 14 (2010) 1121-7.
[12] C.E. Metz, F.B. Atkins, R.N. Beck, The geometric transfer function component for scintillation camera collimators with straight parallel holes, Phys. Med. Biol., 25 6 (1980) 242–250.
[13] H. Zaidi, E.C. Frey, B.M.W. Tsui, Collimator-detector response compensation in SPECT, Quantitative Analysis in Nuclear Medicine Imaging, Springer, (2006) 141–166.
[14] S. Liu, T.H. Farncombe, Collimator-detector response compensation in quantitative SPECT reconstruction, IEEE. Nucl. Sci. Symp. Conf., 5 (2007) 3955-60.
[15] K. Assie, I. Gardin, P. Vera, I. Buvat, Validation of the Monte Carlo simulator GATE for Indium-111 imaging. Phys. Med. Biol., 50 (2005) 3113-25.
[16] A. Cot, E. Jane, J. Sempau, C. Falcon, S. Bullich, J. Pavia, F. Calvino, D. Ros, Modeling of high-energy contamination in SPECT imaging using Monte Carlo simulation, IEEE Trans. Nucl. Sci., 53, 1 (2006) 198–203.
[17] S. Staelens, T. Wit, F. Beekman, Fast hybrid SPECT simulation including efficient septal penetration modeling (SP-PSF), Phys. Med. Biol., 52 11 (2007) 3027–43.
[18] X. Song, W.P. Segars, Y. Du, B.M.W. Tsui, E.C. Frey, Fast modeling of the collimator-detector response in Monte Carlo simulation of SPECT imaging using the angular response function. Phys. Med. Biol., 50 8 (2005) 1791–1804.
[19] E. Rault, S. Staelens, R.V. Holen, J.D. Beenhouwer, S. Vandenberghe, Fast simulation of yttrium-90 bremsstrahlung photons with GATE, Med. Phys., 37 6 (2010) 2943–50.
[20] J.F. Knoll, Radiation detection and measurement, John Wiley & Sons Press, 4th Edition (2010).
Keywords