[1] J.T. Bush Berg, J.A. Seibert, E.M. Leidholdt, J.M. Boone, The essential physics of medical imaging, Lippincott Williams & wilkins Press, 3th Edition, (2012).
[3] G. Trinci, R. Massari, M. Scandellari, S. Boccalini, A. Costantini, R. DiSero, A. Basso, R. Sala, F. Scopinaro, A. Soluri, A new variable parallel holes collimator for scintigraphic device with validation method based on Monte Carlo simulations, Nucl. Instrum. Methods, A621 (2010) 406-412.
[5] S.D. Metzler, R. Accorsi, S. Ayan, R.J. Jaszczak, Slit-slat and multi slit-slat collimator design and experimentally acquired phantom images from a rotating prototype, IEEE Trans. Nucl. Sci., 57 (2010) 125-134.
[6] A. Khorshidi, M. Ashoor, Modulation transfer function assessment in parallel and fan beam collimator with square and cylindrical holes, Ann. Nucl. Med., 28 (2014) 59-66.
[9] D. Lowe, A. Truman, H. Kwok, A. Bergman, Optimisation of the design of round-hole parallel collimators for ultra-compact nuclear medicine imaging, Nucl. Instrum. Methods, A., 621 (2002) 406-412.
[10] V. Moslemi, M. Ashoor, Design and performance evaluation of a new high energy parallel hole collimator for radioiodine planar imaging by gamma cameras: Monte Carlo simulation study, Ann. Nucl. Med., (2017) DOI:10.1007/s 12149-017-1160-9.
[11] B. Zhang, G.L. Zeng, High-resolution versus high-sensitivity SPECT imaging with geometric blurring compensation for various parallel-hole collimation geometries, IEEE Trans. Inf. Technol. Biomed., 14 (2010) 1121-7.
[12] C.E. Metz, F.B. Atkins, R.N. Beck, The geometric transfer function component for scintillation camera collimators with straight parallel holes, Phys. Med. Biol., 25 6 (1980) 242–250.
[13] H. Zaidi, E.C. Frey, B.M.W. Tsui, Collimator-detector response compensation in SPECT, Quantitative Analysis in Nuclear Medicine Imaging, Springer, (2006) 141–166.
[14] S. Liu, T.H. Farncombe, Collimator-detector response compensation in quantitative SPECT reconstruction, IEEE. Nucl. Sci. Symp. Conf., 5 (2007) 3955-60.
[15] K. Assie, I. Gardin, P. Vera, I. Buvat, Validation of the Monte Carlo simulator GATE for Indium-111 imaging. Phys. Med. Biol., 50 (2005) 3113-25.
[16] A. Cot, E. Jane, J. Sempau, C. Falcon, S. Bullich, J. Pavia, F. Calvino, D. Ros, Modeling of high-energy contamination in SPECT imaging using Monte Carlo simulation, IEEE Trans. Nucl. Sci., 53, 1 (2006) 198–203.
[17] S. Staelens, T. Wit, F. Beekman, Fast hybrid SPECT simulation including efficient septal penetration modeling (SP-PSF), Phys. Med. Biol., 52 11 (2007) 3027–43.
[18] X. Song, W.P. Segars, Y. Du, B.M.W. Tsui, E.C. Frey, Fast modeling of the collimator-detector response in Monte Carlo simulation of SPECT imaging using the angular response function. Phys. Med. Biol., 50 8 (2005) 1791–1804.
[19] E. Rault, S. Staelens, R.V. Holen, J.D. Beenhouwer, S. Vandenberghe, Fast simulation of yttrium-90 bremsstrahlung photons with GATE, Med. Phys., 37 6 (2010) 2943–50.
[20] J.F. Knoll, Radiation detection and measurement, John Wiley & Sons Press, 4th Edition (2010).