[1] J.W. Kim, B.C. Lee, Y.R. Uhm, J.H. Jun, Polymer nanocomposite based multi-layer neutron shields, Nuclear Physics and Radiation Physics, (S73) (2010).
[2] A. Mortley, Radiation effects on the properties of a polyurethane/epoxy graft interpenetrating polymer network: An investigation into the application of polymers in the fabrication of containers to store radioactive waste Environmental Science & Technology, (2005) 182.
[3] R. Lo Frano, G. Pugliese, G. Forasassi, Thermal analysis of a spent fuel cask in different transport conditions. Energy, 36(4) (2011) 2285-2293.
[4] R.C. Singleterry, S.A. Thibeault, Materials for low-energy neutron radiation shielding, NASA/TP-2000-210281, (2000), NASA/TP-2000-210281.
[5] J. Kim, J.H. Jun, Y.J. Bae, Epoxy resin composition for neutron shielding, and method for preparing the same, Google Patents (2014).
[6] M.K. Lee, J.K. Lee, J.W. Kim, G.J. Lee, Properties of B4C–PbO–Al(OH)3-epoxy nanocomposite prepared by ultrasonic dispersion approach for high temperature neutron shields. Journal of Nuclear Materials, 445 (2014) 63–71.
[7] O.G. TurgayKorkut, E. Kam, W. Brostow, X-ray, gamma, and neutron radiation tests on epoxy-ferrochromium slag composites by experiments and monte carlo simulations, International Journal of Polymer Analysis and Characterization, 18(3) (2013) 224–231.
[8] N.R. Paluvai, S. Mohanty, S.K. Nayak, Studies on thermal degradation and flame retardant behavior of the sisal fiber reinforced unsaturated polyester toughened epoxy nanocomposites. Journal of Applied Polymer Science, 132(24) (2015) 15.
[9] M.Q. Zhang, G. Shi, M.Z. Rong, B. Wetzel, K. Friedrich, Sliding wear behavior of epoxy containing nano-Al2O3 particles with different pretreatments. Wear, 256 (2004) 1072–1081.
[10] J. Abenojar, M.A. Martinez, F. Velasco, Effect of boron carbide filler on the curing and mechanical properties of an epoxy resin, The Journal of Adhesion, 85(4-5) (2009) 216-238.
[11] H. Cember, T.E. Johnson, Introduction to health physics, Fourth Edition. (2009) Mc Graw-Hill Companies.
[12] W. Kraus, Boron containing polymers for radiation shielding. Polymer preprints, 34 (1993) 592-559.
[13] V. Harish, N.N.T. Niranjana Prabhu, K.T. Varughese, Preparation and characterization of lead monoxide filled unsaturated polyester based polymer composites for gamma radiation shielding applications, Journal of Applied Polymer Science, 112 (2009) 1503–1508.
[14] V.I. Pavlenko, V.M. Lipkanskii, R.N. Yastrebinskii, Calculations of the passage of gamma-quanta through a polymer radiation-protective composite, Journal of Engineering Physics and Thermophysics, 77(1) (2004).
[15] H.S.a.W.S. Ginell, Nuclear and space radiation effects on materials-space vehicle design criteria, NASA-SP-8053, (1970).
[16] Monte Carlo N-Particle Transport Code System. CCC-701/MCNP4C2. (Radiation Shielding Information Center, Oak Ridge National Laboratory, Oak Ridge, TN), (2001), Los Alamos National Laboratory.
[17] E.A. Lorch, Neutron spectra of "'241Am/B, "241Am/Be,241Am/F, "242Cm/Be, " 238pu/13C and 252Cf isotopic neutron sources, International Journal of Applied Radiation and Isotopes, 24 (1973) 585-591.
[18] B. Chilton, J. Kenneth Shultis, R.E. Faw, Principles of radiation shielding, (1984) New Jersey: Prentice-Hall, Inc. 493.
[19] R.B. Firestone, In database for prompt gamma-ray neutron activation analysis, International Atomic Energy Agency (2014).