1. A.G. Kudziev, Production and Application of Stable Enriched Isotopes in the USSR, Nuclear Instruments and Methods in Physics Research, A 282, 267-270 (1989).
2. D.E. Armstrong, et al. A Carbon-13 Production Plant Using Carbon Monoxide Distillation, Los Alamos Scientific Laboratory Report, (1968).
3. E.I. Abbakumov, Development and Industrial Use of Gas Centrifuge for Uranium Enrichment in the Soviet Union, Atomic Energy, 67(4), 255-257 (1989).
4. S. Zeng, et al. A Numerical Method of Cascade Analysis and Design for Multi-Component Isotope Separation, Chem. Eng. Res. Des., 92, 2649–2658 (2014).
5. A. De La Garza, G.A. Garret, J.E. Murphy, Multicomponent Isotope Separation in Cascade, Chem. Eng. Sci. 15, 188-209 (1961).
6. J.E. Murphy, Optimum Flow Distribution for Multicomponent Isotope Separation in a Single Cascade, Rep. K-1508. Union Carbide Corp., Oak Ridge, TN, USA (1962).
7. A. Apelblat, Y. Ilamed-Lehrer, The Theory of A Real Isotope Enriching Cascade – I, J. Nucl. Energy, 22, 1-14 (1968).
8. A.A. Sazykin, Thermodynamic approach to isotope separation. In: Baranov, V.Yu(ED), Isotopes-Properties, Production, and Application, 34(27), 72 (2000).
9. G.A. Sulaberidze, V.D. Borisevich, Cascades for Separation of Multicomponent Isotope Mixtures, Sep. Sci. Tech, 36(8&9) 1769-1817 (2001).
10. A. De La Garza, A Generalization of the Matched Abundance Ratio Cascade for Multicomponent Isotope Separation, Union Carbide Nuclear Company (1962).
11. G.A. Sulaberidze, V.D. Borisevich, Q. Xie, Quasi-Ideal Cascades with an Additional Flow for Separation of Multicomponent Isotope Mixtures, Theor. Found. Chem. Eng., 40(1), 5-13 (2006).
12. I. Yamamoto, A. Kaba, A. Kanagawa, Simple Formulae for Analyzing Matched Abundance Ratio Cascade with Constant Separation Factors for Multi-Component Isotope Separation, J. Nucl. Sci. Tech., 24(11), 969-971 (1987).
13. L. Cheng, S. Zeng, Comparison Study on Different Cascades for Multi-component Isotope Separation, At. Energ. Sci. Tech., 49(12), 2113-2117 (2015).
14. Y. Zhang, S. Zeng, Comparison of Three Model Cascades, At. Energ. Sci. Tech., 48(11), 1921-1927 (2014).
15. T. Song et al. Comparative Study of the Model and Optimum Cascades for Multicomponent Isotope Separation, Sep. Sci. Tech, 45, 2113-2118 (2010).
16. V.A. Palkin, Multicomponent Separation Efficiency of an Optimal Cascade with Prescribed Target Isotope Concentration, At. Energ., 117(3), 184-190 (2015).
17. C. Ying, Z. Guo, H.G. Wood, Solution of the Diffusion Equation in a Gas Centrifuge for Separation of Multicomponent Mixtures, Sep. Sci. Tech, 31(18), 2455-2471 (1996).
18. S. Zeng, G. Ying, A robust and efficient calculation Procedure for Determining Concentration Distribution of Multicomponent Mixtures, Sep. Sci. Tech, 35(4), 613-622 (2000).
19. I.A. Suvorov, A.N. Tcheltsov, Enrichment of tellurium isotopes for pure I-123 production using gas ultra-centrifuges, Nucl. Instrum. Methods Phys. Res., 334, 33-36 (1993).