1. Dyk . Š and Zeman. V, “Evolution of grid-to-rod fretting of nuclear fuel rods during burnup,” Prog. Nucl. Energy, vol. 108, pp. 160–168, 2018, doi: https://doi.org/10.1016/j.pnucene.2018.05.016.
2. H. Aybar and P. Ortego, “A review of nuclear fuel performance codes,” Prog. Nucl. Energy - PROG NUCL ENERGY, vol. 46, pp. 127–141, Dec. 2005, doi: 10.1016/j.pnucene.2005.01.004.
3. R. L. Williamson and S. R. Novascone, “Application of the BISON Fuel Performance Code to the FUMEX-III Coordinated Research Project,” no. April, 2012.
4. N. R. Commission, “FRAPCON-3 : A Computer Code for the Calculation of Steady-State , Thermal-Mechanical Behavior of Oxide Fuel Rods for High Burnup,” vol. 2, 1997.
5. Lanning, D.D., Hann, C.R, Review of Methods Applicable to the Calculation of Gap Conductance in Zircaloy-Clad UO2 Fuel Rods. 1975, Battelle Pacific Northwest Labs, Washington.
6. J.B.Aniscough, Gap Conductance in Circaloy Clad LWR Fuel Rods. 1982, United kingdom Atomic Energy
7. R. Williamson, “Enhancing the ABAQUS thermomechanics code to simulate multipellet steady and transient LWR fuel rod behavior,” J. Nucl. Mater. - J NUCL MATER, vol. 415, pp. 74–83, Aug. 2011, doi: 10.1016/j.jnucmat.2011.05.044.
8. Herranz, L.E., Feria, F., 2010. Extension of the FRAPCON-3.3 creep model to dry storage conditions. Prog. Nucl. Energy 52 (7), 634–639.
9. Rivera, J.E., Performance of light water reactor fuel rods during plant power changes, in Department of Nuclear Engineering. 1981: MIT university.
10. I. National and I. Falls, “Volume IV SCDAP / RELAP5 / MOD3 . 1 Code Manual Volume IV : MATPRO -- A Library of Materials Properties for Light-Water-Reactor Accident Analysis,” vol. IV.
11. M. Safari, M. Aghaie, A. Minuchehr, and G. Allahyarizadeh, “Numerical study of hyperstoichiometric fuel creep (UO2+x) in fuel clad interaction of WWER1000,” Ann. Nucl. Energy, vol. 133, pp. 950–959, 2019,
12. M. Imani, M. Aghaie, A. Zolfaghari, and A. Minuchehr, “Numerical study of fuel–clad mechanical interaction during long-term burnup of WWER1000,” Ann. Nucl. Energy, vol. 80, pp. 267–278, 2015, doi: https://doi.org/10.1016/j.anucene.2015.01.036.
13. T. A. Haynes, J. A. Ball, J. H. Shea, and M. R. Wenman, “Modelling Pellet-Clad Mechanical Interaction During Extended Reduced Power Operation in Bonded Nuclear Fuel,” J. Nucl. Mater., vol. 465, Jun. 2015,
14. Helfer, P.G., J-M. Ricaud, D. Plancq, C. Struzik MODELLING THE EFFECT OF OXIDE FUEL FRACTURING ON THE MECHANICAL BEHAVIOUR OF FUEL RODS. in Pellet-clad Interaction in Water Reactor Fuels. 2004. France.
15. Thermophysical properties database of materials for light water reactors and heavy water reactors, in IAEA-TECDOC-1496. 2005, IAEA International Atomic Energy Agency.
16. Y. Jiang, Y. Cui, Y. Huo, and S. Ding, “Three-dimensional FE analysis of the thermal–mechanical behaviors in the nuclear fuel rods,” Ann. Nucl. Energy, vol. 38, pp. 2581–2593, Nov. 2011,
17. T. Allen, R. J. M. Konings, and A. T. Motta, “Corrosion of Zirconium Alloys,” Compr. Nucl. Mater., vol. 5, pp. 49–68, Dec. 2012, doi: 10.1016/B978-0-08-056033-5.00063-X.
18. “Waterside corrosion of zirconium alloys in nuclear power plants,” IAEA-TECDOC-996, 1998.
19. Guicheret-Retel. V, Trivaudey.F , Boubakar. M, and Thevenin. P, “Elastic and viscoplastic pellets fragmentation modeling using an axisymmetrical ID finite element code,” Nucl. Eng. Des. - NUCL ENG DES, vol. 232, pp. 249–262, Aug. 2004, doi: 10.1016/j.nucengdes.2004.07.003.
20. R. L. Williamson, “Simulation of NGNP Fuel using the BISON Fuel Performance Code,” 2010.
21. “Chapter 4 (FSAR) for BNPP,” 2007.