[1] http://www.britannica.com/EBchecked/topic/ 421667/nuclear-fusion/48320/History-of-fusion-energy-research.
[2] J. Nuckolls, L. Wood, Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR). Nature, 239 (1972) 139.
[3] M. Tabak, J. Hammer, M.E. Glinsky, W.L. Kruer, S.C. Wilks, J. Woodworth, M. Campbell, M.D. Perry, Ignition and high gain with ultrapowerful lasers. Physics of Plasmas (1994-present), 1(5) (1994) 1626-1634.
[4] M. Murakami, H. Nagatomo, H. Azechi, F. Ogando, M. Perlado, and S. Eliezer, Innovative ignition scheme for ICF—impact fast ignition, Nuclear fusion, 46(1) (2005) 99.
[5] R. Betti, C.D. Zhou, K.S. Anderson, L.J. Perkins, W. Theobald, A.A. Solodov, Shock ignition of thermonuclear fuel with high areal density, Physical review letters, 98(15) (2007) 155001.
[6] S. Atzeni, Inertial fusion fast ignitor: Igniting pulse parameter window vs the penetration depth of the heating particles and the density of the precompressed fuel, Physics of plasmas, 6 (1999) 3316.
[7] M. Lafon, X. Ribeyre, G. Schurtz, Gain curves and hydrodynamic modeling for shock ignition, Physics of Plasmas, 17 (2010) 052704.
[8] S. Atzeni, 2-D Lagrangian studies of symmetry and stability of laser fusion targets, Computer Physics Communications, 43(1) (1986) 107-124.
[9] D. Batani, Experimental results on advanced inertial fusion schemes obtained within the HiPER NUKLEONIKA, 57(1) (2012) 3−10.
[10] S. Atzeni, A. Marocchino, A. Schiavi, G. Schurtz, Energy and wavelength scaling of shock-ignited inertial fusion targets, New Journal of Physics, 15(4) (2013) 045004.
[11] X. Ribeyre, M. Lafon, G. Schurtz, M. Olazabal-Loum´e, J. Breil, S. Galera, S. Weber, Shock ignition: modelling and target design robustness, Plasma Physics and Controlled Fusion, 51(12) (2009) 124030.
[12] S. Atzeni, A. Schiavi, A. Marocchino, Studies on the robustness of shock-ignited laser fusion targets, Plasma Physics and Controlled Fusion, 53(3) (2011) 035010.
[13] M. Lafon, X. Ribeyre, G. Schurtz, Optimal conditions for shock ignition of scaled cryogenic deuterium–tritium targets, Physics of Plasmas, 20 (2013) 022708.
[14] D. Batani, S. Baton, A. Casner, S. Depierreux, M. Hohenberger, O. Klimo, M. Koenig, C. Labaune, X. Ribeyre, C. Rousseaux, G. Schurtz, W. Theobald, V.T. Tikhonchuk, Physics issues for shock ignition, Nuclear Fusion, 54(5) (2014) 054009.
[15] S. Atzeni, X. Ribeyre, G. Schurtz, A.J. Schmitt, B. Canaud, R. Betti, L.J. Perkins, Shock ignitionof thermonuclear fuel: principles and modelling, Nuclear Fusion, 54(5) (2014) 054008.
[16] R. Betti, W. Theobald, C.D. Zhou, K.S. Anderson, P.W. McKenty, S. Skupsky, D. Shvarts, V.N. Goncharov, L.A. Delettrez, P.B. Radha, T.C. Sangster, C. Stoeckl, D.D. Meyerhofer, Shock ignition of thermonuclear fuel with high areal densities, in Journal of Physics: Conference Series, IOP Publishing, (2008).
[17] O. Klimo, V.T. Tikhonchuk, X. Ribeyre, G. Schurtz, C. Riconda, S. Weber, J. Limpouch, Laser plasma interaction studies in the context of shock ignitionâ€, Transition from collisional to collisionless absorption, Physics of Plasmas, 18 (2011) 082709.
[18] R. Ramis, J. Meyer-ter-Vehn, J. Ramírez, MULTI2D–a computer code for two-dimensional radiation hydrodynamics, Computer Physics Communications, 180(6) (2009) 977-994.
[19] C. Benedetti, A. Sgattoni, G. Turchetti, P. Londrillo, A High-Accuracy PIC Code for the Maxwell–Vlasov Equations, Plasma Science, IEEE Transactions on, 36(4) (2008) 1790-1798.
[20] S. Atzeni, A. Schiavi, C. Bellei, Targets for direct-drive fast ignition at total laser energy of 200–400 kJ., Physics of plasmas, 14 (2007) 052702.
[21] M.J. Jafari, A.H. Farahbood, S. Rezaei, Effect of ignitor time behavior on performance of shock ignition scheme, Journal of Nuclear Science and Technology, 72(3) (2015) 81-86.