1. J. Zhao, W.A. Schroeder, Optimization of relativistic laser self-channeling in experimental Xenon gas jet target, Plasma Physics and Controlled Fusion, 62, 045009 (2020).
2. MR. Edwards, JM. Mikhailova, The x-ray emission effectiveness of plasma mirrors: Reexamining power-law scaling for relativistic high-order harmonic generation, Scientific Reports, 10, 1 (2020).
3. T. Brümmer, et al, Design study for a compact laser-driven source for medical x-ray fluorescence imaging, Physical Review Accelerators and Beams, 23, 031601 (2020).
4. SY. Gus’kov, et al, The role of fast electron energy transfer in the problem of shock ignition of laser thermonuclear target, High Energy Density Physics, 36, 100835 (2020).
5. J. A. Marozas, et al, First Observation of Cross-Beam Energy Transfer Mitigation for Direct-Drive Inertial Confinement Fusion Implosions Using Wavelength Detuning at the National Ignition Facility, Physical Review Letters, 120, 085001 (2018).
6 J. Luo, et al, Multistage coupling of laser-wakefield accelerators with curved plasma channels, Physical Review Letters, 120, 154801 ( 2018).
7. Yx. Wang, et al, Saturation of stimulated Raman backscattering due to beam plasma instability induced by trapped electrons, Plasma Physics and Controlled Fusion, 62, 075009 (2020).
8. R. Wagner, et al, Electron acceleration by a laser wakefield in a relativistically self-guided channel, Physical Review Letters, 78, 3125 (1997).
9. A. Morozov, et al, Ionization assisted self-guiding of femtosecond laser pulses, Physics of Plasmas, 25, 053110, (2018).
10. W.B. Mori, T. Katsouleas, Ionization assisted self-guiding of femtosecond laser pulses, Physical Review Letters, 69, 3495 (1992).
11. N.E. Andreev, et al, Generation of a wakefield during gas ionization, Plasma Phys. Rep, 26, 947 (2000).
12. D.F. Gordon, et al, Seeding of the forward Raman instability by ionization fronts and Raman backscatter, Physical Review E, 64, 046404 (2001).
13. P. Kumar, et al, Simulation study of CO2 laser-plasma interactions and self-modulated wakefield acceleration, Physics of Plasmas, 26, 083106 (2019).
14. D.L. Fisher, T. Tajima, Enhanced Raman forward scattering, Physical Review E, 53, 1844 (1996).
15. D. Baue, Two-dimensional, two-electron model atom in a laser pulse: Exact treatment, single-active-electron analysis, time-dependent density-functional theory, classical calculations, and nonsequential ionization, Physical Review A, 55, 2180 (1997).
16. L.V. Keldysh, Ionization in the field of a strong electromagnetic wave, Soviet Physics JETP, 20, 5 (1965).
17. H.R. Reiss, Effect of an intense electromagnetic field on a weakly bound system, Physical Review A, 22, 1786 (1980).
18. D. Bauer, P. Mulser, Exact field ionization rates in the barrier-suppression regime from numerical time-dependent Schrödinger-equation calculations, Physical Review A, 59, 569 (1999).
19. F.H.M. Faisal, Journal of Physics B: Atomic and Molecular Physics, 6, L89 (1973).
20. M.V. Ammosov, N. Delone, V. P. Kraino, Tunnel ionization of complex atoms and of atomic ions in an altemating electromagnetic field, Soviet Physics JETP, 64, 1191 (1987).
21. J. Derouillat, et al, Smilei: A collaborative, open-source, multi-purpose particle-in-cell code for plasma simulation, Computer Physics Communications, 222, 351-373 (2018).
22. W.B. Mori, The physics of the nonlinear optics of plasmas at relativistic intensities for short-pulse lasers, IEEE J. Quantum Electron, 33, 1942 (1997).
23. J. Yazdanpanah, Self modulation and scattering instability of a relativistic short laser pulse in an underdense plasma, Plasma Physics and Controlled Fusion, 61, 085021 (2019).
24. E. Khalilzadeh, et al, Stochastic behavior of electrons in high intensity laser–plasma interaction, Physics of Plasmas, 22, 113115 (2015).
25. E. khalilzadeh, A. chakhmachi, J. Yazdanpanah, Stochastic behavior of electrons in high intensity laser–plasma interaction, Plasma Physics and Controlled Fusion, 59, 125004 (2017).
26. J.T. Mendonca, F. Doveil, Stochasticity in plasmas with electromagnetic waves, Physics of Plasmas, 28, 485 (1982).