نوع مقاله : مقاله پژوهشی
نویسندگان
1 پژوهشکده پلاسما و گداخت هستهای، پژوهشگاه علوم و فنون هستهای، سازمان انرژی اتمی، صندوق پستی: 51113-14399، تهران- ایران
2 گروه فیزیک، دانشکده علوم پایه، دانشگاه ایلام، صندوق پستی: 516-69315، ایلام - ایران
چکیده
در این مقاله به بررسی گذار فاز کوانتومی (QPT) زنجیرهی ایزوتوپی زنون (Xe132-122) در چارچوب مدلهای اندرکنش بوزونی1 و بوزون-فرمیونی1 پرداخته شده است. ما برای مطالعهی QPT در این زنجیره از مشاهدهپذیرهایی مانند: انرژی بستگی، انرژی جداسازی دو نوترونی، انرژی واپاشی آلفازا، 2/4R و (2B(E استفاده کردیم. نتایج حاصل از محاسبات نشان داد که هستههای گذار در ناحیههای برای ایزوتوپهای زوج - زوج و برای ایزوتوپهای زوج - فرد به ترتیب Xe130 و Xe127 میباشند.
کلیدواژهها
عنوان مقاله [English]
Experimental observables of shape phase transition from vibrational to Gamma- unstablExperimental observables of shape phase transition from vibrational to Gamma- unstable in the odd and even nucleie in the odd and even nuclei
نویسندگان [English]
- M. Ghapanvari 1
- M. Sayedi 2
1 Plasma and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, AEOI, P.O. Box: 14399-51113, Tehran - Iran
2 Department of Physics, Faculty of Basic Sciences, Ilam University, P.O.Box: 69315-516, Ilam - Iran
چکیده [English]
In this paper, Quantum Phase Transition (QPT) for the Xenon (122-132Xe) isotopes chain in the frameworks of the IBM-1 and IBFM-1 is considered. In order to study the QPT in this chain, we have used the observables such as: binding energy, two neutron separation energy, Alpha decay energy, R4/2 and B(E2). The results show that transitional nuclei in the regions of for even-even isotopes and for even-odd isotopes are 130Xe and 127Xe respectively.
کلیدواژهها [English]
- Quantum phase transition
- Two neutron separation energy
- Xenon isotopes chain
- Alpha decay energy
- M. Ghapanvari, et al, High-spin level structure and Ground-state phase transition in the odd-mass 103-109 Rh isotopes in the framework of exactly solvable sdg- interacting boson-fermion model, Nuclear Phys. A, 971, 51 (2018).
- Feng Pan, J.P. Draayer, Algebraic solutions of an sl- boson system in the U(2l +1) -- O(2l +2) transitional region, J. Phys. A Math. Theor., 35, 7173 (2002).
- M.A. Jafarizadeh, M. Ghapanvari, N. Fouladi, Algebraic solutions for quantum phase transition in odd-mass-number nuclei, Phys. Rev. C., 92, 054306 (2015).
- S. Sachdev, Quantum Phase Transitions Cambridge, Cambridge University Press (2011).
- M. Vojta, Quantum phase transitions, Rep. Prog. Phys., 66, 2069 (2003).
- H. Löhneysen, et al, Non-Fermi-liquid behavior in strongly correlated electron systems, Phys. Rev. B Condens. Matter, 230, 550 (1997).
- F. Iachello, A. Arima, The Interacting Boson Model, Cambridge University Press, (1987).
- J. Arias, C. Alonso, M. Lozano, Nuclear structure studies of the odd-mass Ba and La isotopes with the IBFA-2 model, Nuclear Phys. A., 466, 295 (1987).
- Xin Guan, et al, Ground state phase transition in the Nilsson mean-field plus standard pairing model, Phys. Rev. C, 94, 024309 (2016).
- Yu Zhang, et al, Excited-state quantum phase transitions in the interacting boson model: Spectral characteristics of 0+ states and effective order parameter, Phys. Rev. C, 93, 044302 (2016).
- R.F. Casten, Shape phase transitions and critical-point phenomena in atomic nuclei, Nat. Phys., 2, 811 (2006).
- T. Thomas, et al, Evidence for shape coexistence in 98Mo, Phys. Rev. C., 88, 064305 (2013).
- P. Van Isacker, J. Engel, K. Nomura, Neutron-proton pairing and double-β decay in the interacting boson model, Phys. Rev. C, 96, 064305 (2013).
- J. Kotila, et al, Shape phase transitions in the interacting boson model: Phenomenological versus microscopic descriptions, Phys. Rev. C, 85, 054309 (2012).
- P. Cejnar, J. Jolie, Quantum phase transitions in the interacting boson model, Prog. Part. Nucl. Phys., 62, 210-256 (2009).
- J.M. Arias, J. Dukelsky, J.E. García-Ramos, Quantum Phase Transitions in the Interacting Boson Model: Integrability, Level Repulsion, and Level Crossing, PRL, 91, 1765 (2003).
- P. Von Brentano, et al, Alternative Interpretation of Sharply Rising E0 Strengths in Transitional Regions, PRL, 93, 152502 (2004).
- D.H. Feng, R. Gilmore, S.R. Deans, Phase transitions and the geometric properties of the interacting boson model, Phys. Rev. C, 23, 1254 (1981).
- A.E.L. Dieperink, O. Scholten, F. Iachello, Classical Limit of the Interacting-Boson Model, PRL, 44, 1747 (1980).
- O. Scholten, N. Blasi, Description of the Europium isotopes in the interacting boson-fermion model, Nuclear Phys. A, 380, 509 (1982).
- C. Alonso, et al, UBF(5) to SUBF(3) shape phase transition in odd nuclei for j=1/2, 3/2, and 5/2 orbits: The role of the odd particle at the critical point, Phys. Rev. C, 79, 014306 (2009).
- M. Boyukata, et al, Shape phase transition in odd-even nuclei: From spherical to deformed γ-unstable shapes, Phys. Rev. C, 82, 014317 (2010).
- K. Nomura, T. Niksic, D. Vretenar, Shape-phase transitions in odd-mass γ-soft nuclei with mass A≈130, Phys. Rev. C, 96, 014304 (2017).
- F. Pan, J. Draayer, New algebraic solutions for
SO(6) ↔ U(5) transitional nuclei in the interacting boson model, Nuclear Phys. A, 636, 156 (1998).
- R. Fossion, et al, Nuclear binding energies: Global collective structure and local shell-model correlations, Nuclear Phys. A, 697, 703–747 (2002).
- J.E. Garc´ıa-Ramos, et al, Two-neutron separation energies, binding energies and phase transitions in the interacting boson model, Nuclear Phys. A, 688, 735–754 (2001).
- N. Zamfir, S. Anghel, G. Cata-Danil, Phase/Shape Transitions and the Two Neutron Separation Energies, AIP Conference Proceedings, 1072, 118 (2008).
- S.S.M. Wong, Introductory Nuclear Physics, (John Wiley & Sons, 2004).
- Yu Zhang, et al, Ground-state phase transition in odd-A and odd-odd nuclei near N=90, Phys. Rev. C, 88, 064305 (2013).
- I. Talmi, Simple models of complex nuclei, Harvard Academic Publishers, (1993).
- P. Cejnar, J. Jolie, R.F. Casten, Quantum phase transitions in the shapes of atomic nuclei, RMP, 82, 2155 (2010).
- T. Tamura, Nuclear Data Sheets for A = 122, Nucl. Data Sheets, 108, 455-632 (2007).
- S. Ohya, Nuclear Data Sheets for A = 123, Nucl. Data Sheets, 102, 547-718 (2004).
- J. Katakura, Z.D. Wu, Nuclear Data Sheets for A = 124, Nucl. Data Sheets, 109,1655-1877 (2008).
- J. Katakura, Nuclear Data Sheets for A = 125, Nucl. Data Sheets, 112, 495-705 (2011).
- J. Katakura, K. Kitao, Nuclear Data Sheets for A = 126, Nucl. Data Sheets, 97, 765-926 (2002).
- A. Hashizume, Nuclear Data Sheets for A = 127, Nucl. Data Sheets, 112, 1647-1831 (2011).
- Z. Elekes, J. Timar, Nuclear Data Sheets for A = 128, Nucl. Data Sheets, 129, 191-436 (2015).
- J. Timar, Z, Elekes, B. Singh, Nuclear Data Sheets for A = 129, Nucl. Data Sheets, 121, 143-394 (2014).
- B. Jsingh, Nuclear Data Sheets for A = 130, Nucl. Data Sheets, 93, 33-242 (2001).
- Yu. Khazov, I. Mitropolsky, A. Rodionov, Nuclear Data Sheets for A = 131, Nucl. Data Sheets, 107, 2715-2936 (2006).
- Yu. Khazov, et al, Nuclear Data Sheets for A = 132, Nucl. Data Sheets, 104, 497-790 (2005).
- M.A. Jafarizadeh, et al, Phase transition studies of the odd-mass 123–135Xe isotopes based on SU(1, 1) algebra in IBFM, Int. J. Mod. Phys. E, 25, 1650048 (2016).
- M.A. Jafarizadeha, et al, Study of phase transition of even and odd nuclei based on q-deforme SU(1, 1) algebraic model, Nuclear Phys. A, 972, 86–106 (2018).