نوع مقاله : مقاله پژوهشی
نویسنده
گروه شیمی کاربردی، دانشکده نفت و گاز، دانشگاه یاسوج، صندوق پستی: 56001-75813، گچساران - ایران
چکیده
واپاشی پروتونزا از طریق گسیل یک پروتون از درون هسته رخ میدهد و در نتیجه عدد اتمی هسته مادر یک واحد کاهش مییابد. این واپاشی عمدتاً در هستههای غنی از پروتون رخ میدهد. سازوکار گسیل پروتون بر اساس پدیده کوانتومی تونلزنی داده میشود و در هستهها با تقریب ونتزل، کرامرز و بریلوئین (WKB) بیان میشود. پتانسیلی که در اینجا در نظر گرفته شد، شامل جملات پتانسیل کولنی برای هسته تغییرشکل یافته، پتانسیل گریز از مرکز و پتانسیل هستهای است. پتانسیل هستهای با پتانسیل مجاورتی تقریب زده شد و با استفاده از این پتانسیل و همچنین تقریب WKB احتمال نفوذ از سد پتانسیل محاسبه گردید، و بر آن اساس نیمهعمر واپاشی پروتونزا به دست آمد. اثر دما بر کشش سطحی هسته مورد مطالعه قرار گرفت و با درنظر گرفتن کشش سطحی مایعات رابطه متناسب برای وابستگی دمایی کشش سطحی هستهها در نظر گرفته شد و با اعمال تغییرات دمایی کشش سطحی هسته در پتانسیل مجاورتی، لگاریتم نیمهعمر واپاشی پروتونزای وابسته به دما به دست آمد که حاکی از انطباق بهتر با دادههای تجربی است. به منظور مقایسه بهتر، جذر میانگین مربع انحرافات در دو حالت وابسته به دما و مستقل از دما نیز محاسبه گردید که حاکی از توافق خوب دادههای آزمایشگاهی و محاسباتی در هر دو حالت است.
کلیدواژهها
عنوان مقاله [English]
Investigation of the effect of nucleus temperature on proton decay half-lives of deformed nuclei using proximity potential
نویسنده [English]
- E. Yazdankish
Applied Chemistry Department, Faculty of Gas and Petroleum, Yasouj University, P.O.BOX: 75813-56001, Gachsaran - Iran
چکیده [English]
Proton decay occurs through the emission of a proton from the nucleus, resulting in a decrease in the atomic number of the parent nucleus of a unit. This decay occurs mainly in proton-rich nuclei. The proton emission mechanism is based on the quantum tunneling phenomenon and is expressed in the nuclei by Wentzel-Kramers-Brillouin or WKB approximations. The potential considered here includes the Coulomb potential for deformed nuclei, the centrifugal potential, and the nuclear potential. The nuclear potential was approximated by the proximity potential. The probability of the penetration from the potential barrier and the WKB approximation was obtained based on the half-lives of the proton decay. The effect of temperature on the surface tension of the hot nucleus was studied and a proportional relationship was considered by comparing it with the surface tension of liquids. By applying changes in the proximity potential, the logarithm of the proton-decay and temperature-dependent decay logarithms were calculated indicating better agreement with the experimental data. Then, in order to obtain the better comparison, the root of the mean square deviation was calculated indicating a good agreement between the laboratory and computational data in both cases
کلیدواژهها [English]
- Proton decay
- Proximity potential
- Surface tension of a Nucleus
- M. Manhas, R.K. Gupta, Proximity potential for deformed, oriented nuclei: “Gentle” fusion and “hugging” fusion, Physical Review C, 72(2), 024606 (2005).
- I. Dutt, The role of various parameters used in proximity potential in heavy-ion fusion reactions: New extension, Pramana, 76(6), 921-931 (2011).
- R.K. Gupta, N. Singh, M. Manhas, Generalized proximity potential for deformed, oriented nuclei, Physical Review C, 70(3), 034608 (2004).
- A. Daei-Ataollah, O. Ghodsi, M. Mahdavi, Proximity potential and temperature effects on α-decay half-lives, Physical Review C, 97(5), 054621 (2018).
- V. Zanganah, et al, Calculation of α-decay and cluster half-lives for 197–226Fr using temperature-dependent proximity potential model, Nuclear Physics A, 997, 121714 (2020).
- B.R. Mottelson, S.G. Nilsson, Classification of the nucleonic states in deformed nuclei, Physical Review, 99(5), 1615 (1955).
- Z. Gao-Long, L. Xiao-Yun, L. Zu-Hua, Coulomb Potentials between spherical and deformed nuclei, Chinese Physics Letters, 25(4), 1247 (2008).
- O. Ghodsi, A. Daei-Ataollah, Systematic study of α decay using various versions of the proximity formalism, Physical Review C, 93(2), 024612 (2016).
- K. Santhosh, J.G. Joseph, S. Sahadevan, α decay of nuclei in the range 67⩽ Z⩽ 91 from the ground state and isomeric state, Physical Review C, 82(6), 064605 (2010).
- K. Santhosh, B. Priyanka, M. Unnikrishnan, Cluster decay half-lives of trans-lead nuclei within the Coulomb and proximity potential model, Nuclear Physics A, 889, 29-50 (2012).
- E.A. Guggenheim, The principle of corresponding states, The Journal of Chemical Physics, 13(7), 253-261 (1945).
- P. Biney, W.-g. Dong, J. Lienhard, Use of a cubic equation to predict surface tension and spinodal limits, J. Heat Transfer, 108(2), 405-410 (May 1986).
- A. Fröba, S. Will, A. Leipertz, Saturated liquid viscosity and surface tension of alternative refrigerants, International Journal of Thermophysics, 21(6), 1225-1253 (2000).
- H. Jaqaman, Instability of hot nuclei, Physical Review C, 40(4), 1677 (1989).
- E. Javadimanesh, et al, Investigation of deformed nuclei with a new potential combination, Chinese Physics C, 37(11), 114102 (2013).
- D.T. Akrawy, et al, Systematic study of α-decay half-lives using Royer and related formula, Nuclear Physics A, 971, 130-137 (2018).
- M. Pfützner, et al, Radioactive decays at limits of nuclear stability, Reviews of Modern Physics, 84(2), 567 (2012).
- K. Santhosh, I. Sukumaran, Description of proton radioactivity using the Coulomb and proximity potential model for deformed nuclei, Physical Review C, 96(3), 034619 (2017).
- A. Sonzogni, Proton radioactivity in Z> 50 nuclides, Nuclear Data Sheets, 95(1), 1-48 (2002).
- D. Delion, R. Liotta, R. Wyss, Systematics of proton emission, Physical Review Letters, 96(7), 072501, (2006).
- [http://www-nds.iaea.org/RIPL-2].