نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه فیزیک، دانشکده علوم پایه، دانشگاه محقق اردبیلی، صندوق پستی: 179، اردبیل ـ ایران

2 پژوهشکده کاربرد پرتوها، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 3486-11365، تهران ـ ایران

10.24200/nst.2023.1339

چکیده

در این کار پژوهشی، نمونه‌های هیدروکسی اپتایت آلاییده با ناخالصی‌های سریم، گادولونیم و ترکیبی از این دو ناخالصی به روش هیدروترمال سنتز شدند. به منظور بررسی فازهای بلوری تشکیل یافته در هرکدام از نمونه‌های سنتز شده، از کد MAUD که یک نرم‌افزار برای تجزیه و تحلیل ساختار ماده با استفاده از پراش بر اساس روش ریتولد است، استفاده شد. پاسخ دزیمتری ترمولومینسانس نمونه‌ها مورد بررسی قرار گرفت و یافته‌ها نشان داد که پاسخ ترمولومینسانس نمونه‌ آلاییده با ناخالصی ترکیبی، سطح میانی پاسخ ترمولومینسانس نمونه‌های آلاییده با یک ناخالصی است. مشخص شد که افزودن ناخالصی سریم می‌تواند پاسخ ترمولومینسانس نمونه‌ آلاییده با گادولونیم را بهبود بخشد. هم­چنین نتایج حاصل از انجام آنالیز ریتولد نشان داد که فازهای تشکیل­دهنده هیدروکسی اپتایت می‌تواند بر پاسخ دزیمتری ترمولومینسانس آن مؤثر باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Synthesis of hydroxyapatite doped with single and compound dopants and study upon the effect of crystal phase on its thermoluminescence response irradiated by gamma rays

نویسندگان [English]

  • P. Taghipour Niar 1
  • ّF. Zolfagharpour 1
  • F. Ziaie 2
  • H. Daneshvar 2

1 Department of Physics, Faculty of Sciences, University of Mohaghegh Ardabili, P.O. Box: 179, Ardabil - Iran

2 Radiation Application Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 11365-3486, Tehran - Iran

چکیده [English]

In this research work, hydroxyapatite samples doped with cerium, gadolinium, and a combination of these two dopants were synthesized through the hydrothermal method. MAUD code, a material diffraction analysis software based on the Rietveld method, was used to investigate the formed crystal phases in synthesized samples. The thermoluminescence dosimetry response of the samples was investigated, and the results showed that the thermoluminescence response of the sample doped with the compound dopants is the median level of the thermoluminescence response of the samples doped with one dopant. It was found that adding cerium dopant could improve the thermoluminescence response of the sample doped with gadolinium. Also, the results of Rietveld refinements showed that the formed phases of hydroxyapatite could affect the thermoluminescence dosimetry response.

کلیدواژه‌ها [English]

  • Dosimetry
  • Thermoluminescence
  • Hydrothermal
  • Rietveld method
  • Crystal phase
  • Hydroxyapatite
1.       Y. Kirsh, Kinetic Analysis of Thermoluminescence, Phys. Status Solidi, 129(1), 15-48 (1992), doi: 10.1002/pssa.2211290102.
 
2.   Y. Fukuda, et al., Thermoluminescence of hydroxyapatite doped with copper, Radiat. Prot. Dosimetry, 47(1-4), 205–207 (1993), doi: 10.1093/oxfordjournals.rpd.a081733.
 
3.   R. Alvarez, et al., Thermoluminescent characteristics of synthetic hydroxyapatite (SHAp), Appl. Radiat. Isot., 83, 192-195 (2014), doi: 10.1016/j.apradiso. 2013.04.011.
 
4.   M. Shafaei, F. Ziaie, N. Hajiloo, Thermoluminescence properties of micro and nano structure hydroxyapatite after gamma irradiation, Kerntechnik, 81(6), 651-654 (2016), doi: 10.3139/ 124.110579.
 
5.   J. Azorin, Preparation methods of thermoluminescent materials for dosimetric applications: An overview, Appl. Radiat. Isot., 83, 187-191 (2014), doi: 10.1016/j.apradiso.2013.04.031.
 
6.   S.W.S. McKeever, R.H. Bube, Thermoluminescence of Solids, Cambridge University Press, 40(4), (1987), doi: 10.1063/1.2819986.
 
7.   K. Madhukumar, et al., Photoluminescence and thermoluminescence properties of tricalcium phosphate phosphors doped with dysprosium and europium, Bull. Mater. Sci., 30(5), 527-534 (2007), doi: 10.1007/s12034-007-0082-x.
 
8.   M. Shafaei, et al., Thermoluminescence properties of gammairradiated nanostructure hydroxyapatite, Luminescence, 31(1), 223–228 (2016).
 
9.   N.A.S. Mohd Pu’ad, et al., Syntheses of hydroxyapatite from natural sources, Heliyon, 5(5), e01588 (2019), doi: 10.1016/j.heliyon.2019.e01588.
 
10. A. Khanafari, T. Akbari, M.R. Sohrabi, Comparison of nano-hydroxyapatite productivity by Pseudomonas aeruginosa and Serratia marcescense through encapsulation method Nano-hydroxyapatite productivity by encapsulation method, Nanomed J Orig. Res., 1(4), 276-284 (2014), [Online]. Available: http://nmj.mums.ac.ir.
 
11. M. Sadat-Shojai, et al., Synthesis methods for nanosized hydroxyapatite with diverse structures, Acta Biomater., 9(8), 7591-7621 (2013), doi: 10.1016/j.actbio.2013.04.012.
12. H. Daneshvar, et al., Influence of morphology and chemical processes on thermoluminescence response of irradiated nanostructured hydroxyapatite, J. Lumin., 219 (2020), doi: 10.1016/j.jlumin. 2019. 116906.
13. H. Li, et al., Growth Mechanism of Surfactant-Free Size-Controlled Luminescent Hydroxyapatite Nanocrystallites, Cryst. Growth Des., 17(5), 2809–2815 (2017), doi: 10.1021/acs.cgd.7b00258.
 
14. D. Haverty, et al., Structure and stability of hydroxyapatite: Density functional calculation and Rietveld analysis, Phys. Rev. B-Condens. Matter Mater. Phys., 71(9), 94103 (2005), doi: 10.1103/ PhysRevB.71.094103.
 
15. R. Pérez-Solis, et al., Synthesis and characterization of a monoclinic crystalline phase of hydroxyapatite by synchrotron X-ray powder diffraction and piezoresponse force microscopy, Crystals, 8(12), 458 (2018), doi: 10.3390/cryst8120458.
 
16. G. Rani, P.D. Sahare, Effect of phase transitions on thermoluminescence characteristics of nanocrystalline alumina, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, 311, 71–77 (2013), doi: 10.1016/j.nimb. 2013.06.018.
 
17. V.S.M. Barros, et al., ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR-ABEN Rare earth doped aluminum oxide dosimeter prepared by combustion synthesis, 7-10 (2007), [Online]. Available: https://pdfs.semanticscholar.org/60f1/ef510c6517a2642b273a81aadff6e9f8ac33.pdf.
 
18. H. Daneshvar, et al., The role of La, Eu, Gd, and Dy lanthanides on thermoluminescence characteristics of nano-hydroxyapatite induced by gamma radiation, SN Appl. Sci., 1(10), (2019), doi: 10.1007/s42452-019-1162-4.
 
19. T. Ma, Z. Xia, L. Liao, Effect of reaction systems and surfactant additives on the morphology evolution of hydroxyapatite nanorods obtained via a hydrothermal route, Appl. Surf. Sci., 257(9), 4384–4388 (2011), doi: 10.1016/j.apsusc.2010.12.067.
 
20. H. Daneshvar, Synthesis and Study of Thermoluminescence Properties of Nanostructured Hydroxyapatite Doped with Impurities, Nuclear Science & Technology Research Institute, (2020), doi: 10.3139/124.110445.
 
21. H. Daneshvar, et al., Synthesis and evaluation of thermoluminescence properties of cerium-coated nanostructured hydroxyapetate from a dosimetric perspective, 26th Iranian Nuclear Conference, (2020), (In Persian).
 
22. M. Shafaei, et al., The effect of sintering on thermoluminescence response of hydroxyl apatite nano-structure synthesized via hydrolysis method from dosimetric point of view, Iran. J. Radiat. Saf. Meas., 2(4), 13-18 (2014), doi: 10.22052/2.4.13.
 
23.          M. Shafaei, et al., Study on carbonated hydroxyapatite as a thermoluminescence dosimeter, Kerntechnik, 80(1), 66-69 (2015), doi: 10.3139/124. 110484.
 
24. H.M. Rietveld, A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr., 2(2), 65-71 (1969), doi: 10.1107/ S0021889869006558.
 
25. L. Lutterotti, Total pattern fitting for the combined size-strain-stress-texture determination in thin film diffraction, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, 268(3-4), 334-340 (2010), doi: 10.1016/j.nimb.2009.09.053.
 
26. L. Lutterotti, Maud: a Rietveld analysis program designed for the internet and experiment integration, Acta Crystallogr. Sect. A Found. Crystallogr., 56(s1), s54-s54 (2000), doi: 10.1107/s0108767300021954.
 
27. L. Lutterotti, MAUD :Material Analysis Using Diffraction, http://www.ccp14.ac.uk/ccp/web-mirrors/ lutterotti/~luttero/maud/index.html.
 
28. B.H. Toby, R factors in Rietveld analysis: How good is good enough?, Powder Diffr., 21(1), 67–70 (2006), doi: 10.1154/1.2179804.
 
29. A. Barrera-Villatoro, et al., Cathodo- and thermally stimulated luminescence characterization of synthetic calcium phosphates, Spectrosc. Lett., 51(1), 22–26 (2018), doi: 10.1080/00387010.2017.1405993.
 
30. A. Zarinfar, M. Shafaei, F. Ziaie, Synthesis, Characterization and Thermoluminescence Properties of Nano-Structure Gadolinium Doped Hydroxyapatite (HAP:Gd), Procedia Mater. Sci., 11, 293–298 (2015), doi: 10.1016/j.mspro.2015.11.075.
 
31. F. Ziaie, N. Farhadi Moein, M. Shafaei, Thermoluminescent characteristics of nano-structure hydroxyapatite:Dy, Kerntechnik, 79(6), (2014), doi: 10.3139/124.110445.
 
32. M.M. Mohammadi, S.M. Hosseini Pooya, Type testing of model 7200 automatic TLD reader, Radiat. Prot. Dosimetry, 174(1), (2017), doi: 10.1093/rpd/ ncw100.
 
33. Y. Pan, J.L. Huang, C.Y. Shao, Preparation of β-TCP with high thermal stability by solid reaction route, J. Mater. Sci., 38(5), 1049–1056 (2003), doi: 10.1023/A:1022354015226.
 
34. X. Guo, et al., Effect of calcining temperature on particle size of hydroxyapatite synthesized by solid-state reaction at room temperature, Adv. Powder Technol., 24(6), 1034–1038 (2013), doi: 10.1016/j. apt.2013.03.002.
 
35. M. Ginting, et al., Preparation and characterization of zinc oxide doped with ferrite and chromium, AIP Conference Proceedings, AIP Publishing LLC, 030062 (2017), doi: 10.1063/1.4991166.
 
36. P. Chand, A. Gaur, A. Kumar, Effect of Cr and Fe doping on the structural and optical properties of ZnO nanostructures, Int. J. Chem. Nucl. Mater. Metall. Eng, 8, 1238-1241 (2014), doi: 10.5281/ zenodo.1097046.
 
37. M. Meyer, L.C. Damonte, Study of Co and Fe-doped ZnO milled nanopowders, Powder Technology, 286, 371-377 (2015), doi: 10.1016/j.powtec.2015.07.006.
 
38.          P.C. Patel, S. Ghosh, P. Srivastava, Effect of impurity concentration on optical and magnetic properties in ZnS: Cu nanoparticles, Physica E: Low-dimensional Systems and Nanostructures, 93, 148-152 (2017), doi: 10.1016/j.physe.2017.06.009.