نوع مقاله : مقاله پژوهشی

نویسندگان

پژوهشکده چرخه سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 8486-11365، تهران- ایران

چکیده

به منظور تولید رادیوایزوتوپ تکنسیم-۹۹ حاصل از واپاشی رادیواکتیو مولیبدن-۹۹ و خالص‌­سازی محصول حاصل از فرایند انحلال اسیدی هدف مینیاتوری، لازم است آلودگی ید گازی در حد قابل قبولی کاهش یابد. به این منظور از جاذب‌های جامد استفاده می‌شود. یکی از بهترین جاذب‌های مورد استفاده از موردنیت حاوی نقره تشکیل شده است. در این پژوهش روش سنتز و مشخصات جاذب سنتز شده مورد بررسی قرار گرفته است. برای تهیه این جاذب بلورهای موردنیت حفره‌دار با اندازه حدود ۱۰ میکرومتر و نسبت آلومینیم به سیلیکون برابر 2/5 سنتز شد و پس از آن با استفاده از عوامل خمیرکننده، پایدارکننده و متخلخل‌­کننده به شکل گرانول درآمد. گرانول‌های تهیه شده موردنیت با نقره جایگزین شد که درصد وزنی نقره در آن برابر ۱/۸ ارزیابی شد. نتایج حاصل از ارزیابی جذب ید گازی توسط جاذب تهیه شده نشان‌دهنده درصد جذبی برابر با ۲/۹۹ درصد می‌باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Synthesis of iodine-sorbent with applicability in decontamination of the gaseous phase of the dissolution stage of Fission-Molly production

نویسندگان [English]

  • B. Shaghaghi
  • S.D. Shirvani-Arani
  • I. Dehghan
  • S.M. Miremad
  • Sh. Motmaen Esfahani
  • M. Tabasi
  • A. Bahrami-Samani
  • M. Ghannadi Maragheh

Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box:11365-8486, Tehran-Iran

چکیده [English]

To produce the Technetium-99 isotope from Molybdenum-99 radioactive decay and purify the product of small-scale acidic target dissolution, the gaseous Iodine impurity has to be reduced to AN acceptable level. Solid adsorbents are used for this reason. One of the best adsorbents is based on Silver-Exchanged Mordenite. In this research, the synthesis procedure and characteristics of synthesized adsorbent have been discussed. To prepare solid adsorbent, spheric mordenite hallow crystals of about 10 micrometers and the Si/Al ratio of 5.2 were synthesized and granulated using a binding agent, stabilizer, and foaming agent. Prepared granules were silver exchanged. The silver content of the end product was evaluated 8.1 weight percent. Results from gaseous Iodine adsorption showed that 99.2 percent of passing Iodine was adsorbed.

کلیدواژه‌ها [English]

  • Adsorption
  • Gaseous Iodine
  • Silver-exchanged Mordenite
  • Dissolution
  • Mo-99
  1. Non-HEU Production Technologies for Molybdenum-99 and Technetium-99m. 2013, Vienna: International Atomic Energy Agency.

 

  1. National Academies of Sciences, E. and Medicine, Molybdenum-9 for medical imaging. National Academies Press (2016).

 

  1. R. Münze, et al., Large scale production of fission 99Mo by using fuel elements of a research reactor as starting material, The International Journal of Applied Radiation and Isotopes, 35(8), 749-754 (1984).

 

  1. G. Beyer, et al., ROMOL-99—a new innovative small-scale LEU-based Mo-99 production process, in Proceedings of the 6th International Conference on Isotopes, (2008).

 

  1. E. Basmanov, et al., Management of radioactive waste from 99Mo production, IAEA, Vienna, (1998).

 

  1. D. Haefner, Methods of gas phase capture of iodine from fuel reprocessing off-gas: a literature survey, (2007).

 

  1. B. Li, et al., Capture of organic iodides from nuclear waste by metal-organic framework-based molecular traps, Nature Communications, 8(1), 1-9 (2017).

 

  1. M. Outokesh, et al., Comparative study on adsorption of iodine vapor by silica-supported Cu nanoparticles and micronized copper, Industrial & Engineering Chemistry Research, 51(47), 15315-15323 (2012).

 

  1. J.H. Yang, et al., Bismuth-embedded SBA-15 mesoporous silica for radioactive iodine capture and stable storage, Journal of Nuclear Materials, 465, 556-564 (2015).

 

  1. T. Thomas, B. Staples, L. Murphy, Development of Ag 0 Z for bulk 129 I removal from nuclear fuel reprocessing plants and PbX for 129 I storage, Idaho National Engineering Lab (1978).

 

  1. F. Herrmann, B. Herrmann, V. Hoeflich, Removal efficiency of silver impregnated filter materials and performance of iodie filters in the off-gas of the Karlsruhe reprocessing plant WAK, Harvard Univ., Boston, MA (United States). Harvard Air Cleaning Lab.; USDOE (1997).

 

  1. D. Holladay, Literature survey: methods for the removal of iodine species from off-gases and liquid waste streams of nuclear power and nuclear fuel reprocessing plants, with emphasis on solid sorbents. (1979).

 

  1. R.A. Brown, J.D. Christian, T.R. Thomas, Airborne radionuclide waste-management reference document, Exxon Nuclear Idaho Co (1983).

 

  1. X. Li, R. Prins, J.A. van Bokhoven, Synthesis and characterization of mesoporous mordenite, Journal of Catalysis, 262(2), 257-265 (2009).

 

  1. P.K. Bajpai, Synthesis of mordenite type zeolite, Zeolites, 6(1), 2-8 (1986).

 

  1. B.O. Hincapie, et al., Synthesis of mordenite nanocrystals, Microporous and Mesoporous Materials, 67(1), 19-26 (2004).

 

  1. T. Thomas, et al., Airborne elemental iodine loading capacities of metal zeolites and a method for recycling silver zeolite, Allied Chemical Corp., Idaho Falls, Idaho (USA). Idaho Chemical Programs (1977).

 

  1. A. AC07658085, Treatment, conditioning and disposal of iodine 129, Internat. Atomic Energy Agency (1987).

 

  1. B.J. Riley, et al., Materials and processes for the effective capture and immobilization of radioiodine: A review, Journal of Nuclear Materials, 470, 307-326 (2016).

 

  1. S.B. Whitaker, et al., Purification of I-129 from Spent PWR Fuel. (2021).

 

  1. R.V. Jasra, et al., Effect of clay binder on sorption and catalytic properties of zeolite pellets, Industrial & Engineering Chemistry Research, 42(14), 3263-3272 (2003).

 

  1. S.G. Aspromonte, et al., Study of the nature and location of silver in Ag-exchanged mordenite catalysts, Characterization by spectroscopic techniques. The Journal of Physical Chemistry C, 117(48), 25433-25442 (2013).

 

  1. S. Chibani, et al., Impact of the Si/Al ratio on the selective capture of iodine compounds in silver-mordenite: a periodic DFT study, Physical Chemistry Chemical Physics, 18(36), 25574-25581 (2016).

 

  1. A.I. Wiechert, et al., Capture of Iodine from Nuclear-Fuel-Reprocessing Off-Gas: Influence of Aging on a Reduced Silver Mordenite Adsorbent after Exposure to NO/NO2, ACS Applied Materials & Interfaces, 12(44), 49680-49693 (2020).

 

  1. S. Narayanan, et al., Recent advances in the synthesis and applications of mordenite zeolite–review, RSC Advances, 11(1), 250-267 (2021).

 

  1. J.L.V. Lynch, et al., Preparation, characterization, and determination of mechanical and thermal stability of natural zeolite-based foamed geopolymers, Construction and Building Materials, 172, 448-456 (2018)