نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشکده‌ی رآکتور و ایمنی هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی، صندوق پستی: 1339-14155، تهران ـ ایران

2 گروه فیزیک، دانشکده علوم پایه، دانشگاه بین‌المللی امام خمینی، صندوق پستی: 96818-٣٤١٤٨، قزوین - ایران

3 پژوهشکده‌ی‌ رآکتور و ایمنی هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی، صندوق پستی: 1339-14155، تهران ـ ایران

چکیده

استفاده از پرتونگاره‌های ایکس و نوترونی از کارآمدترین روش‌ها برای شناسایی عیوب داخلی و ساختار پیچیده اشیا است. با توجه به تفاوت برهم‌کنش نوترون‌ها و پرتوهای ایکس با مواد، از روی پرتونگاره‌ها می‌توان اطلاعات مختلفی به ­دست آورد. به علت پراکندگی‌های نوترون‌ها و فوتون‌های ایکس، ابعاد نقطه‌ی کانونی، نویزهای الکترونیکی و سایر موارد در پرتونگاره‌های حاصل از این دو روش، کیفیت کاهش یافته و تصاویر مات شدگی دارند. در این تحقیق ضمن بررسی پرتونگاره‌های ایکس و نوترون، به چگونگی شناسایی آسیب‌ها و ساختار درونی اشیا و اجسام با آن‌ها پرداخته شده و روشی برای بهبود کیفیت پرتونگاره‌ها ارایه شده است. بررسی نشان می‌دهد که پرتونگاری نوترونی در شناسایی ساختار داخلی مواد با عدد اتمی کم، بسیار خوب عمل می‌کند و پرتونگاری ایکس برای شناسایی مواد با اتمی بالا مانند اجسام فلزی کارایی خوبی دارند. در این تحقیق برای ارتقای تصاویر و از بین بردن مات شدگی از روش کانولوشن گوسی استفاده شده است. نتایج نشان می‌دهند که با روش حذف زمینه می‌توان مات شدگی تصاویر را کم کرده و نواحی آسیب و ساختار درونی اشیا را بهتر بررسی کرد. برای ارزیابی از نظر متخصصین استفاده شده که نتایج ارزیابی نشان می‌دهد که بهبود تصاویر مورد تأیید متخصصین است.

کلیدواژه‌ها

عنوان مقاله [English]

Improvement and comparison of X and Neutron radiography images by Gaussian Convolution Method

نویسندگان [English]

  • A. Movafeghi 1
  • E. Yahaghi 2
  • S.H. Mosavian 2
  • B. Rokrok 3

1 Reactor and Nuclear Safety Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 14155-1339, Tehran - Iran

2 Physics Department, Basic Science Faculty, Imam Khomeini International University, P.O.Box: 34148-96818, Qazvin – Iran

3 Reactor and Nuclear Safety Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 14155-1339, Tehran - Iran

چکیده [English]

X-rays and neutron radiography images are one of the most effective defects and structure detection methods. The interactions between neutrons and X-rays are different in the material, and therefore, different information can be obtained from the radiographs. Due to neutron and X-rays photon scattering, focal spot size, electronic noises, etc., the images are blurred and their quality is reduced. In this study, while investigating the radiographs of X-rays, and neutrons, the defects and internal structure of objects are investigated. The results show that neutron radiography performs very well in detecting the internal structure of low atomic number materials. X-ray radiography is effective for high atomic numbers as metal. Gaussian convolution is used to enhance the radiography images and reduce blurriness components. The results show that by reducing the background, the blurriness components can be reduced and the defects areas and internal structure of the objects can be better investigated. Specialists evaluated the results in radiography; the results show that the expert’s evaluation approved the image enhancement.

کلیدواژه‌ها [English]

  • X-rays radiography
  • Neutron radiography
  • Structure defects
  • Image processing
  • Gaussian convolution
1. R. Behling, Modern Diagnostic X-Ray Sources, Technology, Manufacturing, Reliability. Boca Raton, FL, USA: Taylor and Francis, CRC Press. ISBN 9781482241327 (2015).
 
2. E. Negahdarzadeh, et al, Diagnosis of design and defects in radiography of ceramic antiqueobjects using the wavelet- domain hidden Markov models, Journal of Cultural Heritage, 35, 56-63 (2019).
 
3. T. Franzel, U. Schmidt, S. Roth, Object Detection in Multi-view X-Ray Images, In DAGM (2012).
 
4. P. Shaygan-Fard, et al, Enhancement radiography image by two algorithms based on cartoon – texture decomposition, Physica Scripta, No. 065002, 94 (6), 1-7 (2019).
 
5. M. Mirzapour, E. Yahaghi, A. Movafeghi, Comparison of four iterative methods for improving the contrast of the radiography images, Physica Scripta, No. 035001, 94 (3), 1-9 (2018).
 
6. D. Mery, V. Riffo, Automated Object Recognition in Baggage Screening Using Multiple X-ray Views, In 52nd Annual Conference of the British Institute for Non-Destructive Testing, Telford, (2013).
 
7. M. Mansoor, R. Rajashankari, Detection of concealed weapons in Xray images using fuzzy K-NN, International Journal of Computer Science, Engineering and Information Technology, 2(2), (2012).
 
8. I.S. Anderson, Neutron Imaging and Applications, by, Springer, (2009).
 
9. ASTM International, ASTM E748, Practices for Thermal Neutron Radiography of Materials, (2014).
 
10. ASTM International, ASTM E545: Standard Test Method for Determining Image Quality in Direct Thermal Neutron Radiographic Examination, (2014).
 
11. J.S. Brenizer, A review of significant advances in neutron imaging from conception to the present, Physics  Procedia,  43, 10-20 (2013).
 
12. J.J. Henriksen, 3D surface tracking and approximation using Gabor filters, South Denmark University, March 28 (2007).
 
13. R.J. Ferrari, et al, Analysis of Asymmetry in Mammograms via Directional Filtering With Gabor Wavelets, IEEE Trans. on Medical Imaging, 20(9), 953-964, September (2001).
 
14. A. Serrano, et al, Analysis of variance of Gabor filter banks parameters for optimal face recognition, Pattern Recognition Letters, 1998-2008 (2011).
 
15. R.J. Ferrari, et al, Analysis of Asymmetry in Mammograms via Directional Filtering With Gabor Wavelets, IEEE Trans. on Medical  Imaging, 20 (9), 953-964 (2001).
 
16. J. Oh, S. Choi, Selective generation of Gabor features for fast face recognition on mobile devices, Pattern Recognition Letters, 34, (2013).
 
17. P. Kruizinga, N. Petkov, S.E. Grigorescu, Comparison of texture features based on Gabor filters, Proceedings of the 10th International Conference on Image Analysis and processing, (1999).
 
18. P. Kovesi, Phase Preserving Denoising of Images, The Australian Pattern Recognition Society Conference: DICTA'99. Perth WA. pp 212-217 (December1999). http://www.cs.uwa.edu.au /pub/ robvis/ papers/p /denoise.ps.gz.
 
19. https://nray.ca/nray/images.
 
20. ISO 17636-2, Non-destructive testing of welds-Radiographic testing-Part 2: X- and gamma-ray techniques with digital detectors, (2013).
 
21. E.H. Lehmann, S. Hartmann, M.O. Speidel, Investigation of the content of Ancient Tibetan Metallic Buddha Statues by means of Neutron Imaging Methods, Archaeometry, 52 (3), 416-428 (2010).