1. A. Ceccatelli, P. DeFelice, A. Fazio, Development of simulated air filters for gamma-ray spectrometry proficiency testing, Applied Radiation and Isotopes, 68, 1240–1246 (2010).
2. C.C. Conti, I.C.P. Salinas, H, A detailed procedure to simulate an HPGe detector with MCNP5, Progress in Nuclear Energy, 66, 35-40 (2013).
3. Magdalena Długosz-Lisiecka, Application of modern anticoincidence (AC) system in HPGe γ-spectrometry for the detection limit lowering of the radionuclides in air filters, Journal of Environmental Radioactivity, 169-170, 104-108 (2017).
4. Nikola Marković, Per Roos, Sven Poul NielsenNikola, Digital gamma-gamma coincidence HPGe system for environmental analysis, Applied Radiation and Isotopes (2016), DOI: http://dx.doi.org/10.1016/j. apradiso.2016.12.017.
5. P. Rulı´k, et al, Low level air radioactivity measurements in Prague, Czech Republic, Applied Radiation and Isotopes, 67, 969–973 (2009).
6. Paolo Tristan F. Cruz, et al, Assessment of temporal variations of natural radionuclides Beryllium-7 and Lead-212 in surface air in Tanay, Philippines, Journal of Environmental Radioactivity, 105989, 208-209 (2019), https://doi.org/10.1016/j.jenvrad. 2019.105989.
7. N. Alkhomashi, et al, Measurements of surface air Be-7 concentrations in Saudi Arabia, Applied Radiation and Isotopes, 165, 109305 (2020), https://doi.org /10.1016/j.apradiso.2020.109305.
8. Ari-Pekka Leppänen, et al, Artificial radionuclides in surface air in Finland following the Fukushima Dai-ichi nuclear power plant accident, Journal of Environmental Radioactivity, 126, 273-283 (2013).
9. N. Alkhomashi, FI. Almasoud, Indication of the radioactive fallout in Riyadh, Saudi Arabia following the Fukushima nuclear accident, Journal of Environmental Radioactivity, 152, 70-74 (2016).
10. V. Doostmohammadi, et al, In: Proceedings of NSI, (NSI, Isfahan, 2015), (In Persian).
11. Z. Hazami, et al, In: Proceedings of NSI, (NSI, Yazd, 2012), (In Persian).
12. H. Doostizadeh, et al, In: Proceedings of NSI, (NSI, Rasht, 2014), (In Persian).
13. B.E. Tomlin, R. Zeisler, R.M. Lindstrom, γγ coincidence spectrometer for instrumental neutron-activation analysis, Nuclear Instruments and Methods in Physics Research, A 589, 243–249 (2008).
14. W. Scates, et al, Optimization studies of a Compton suppression spectrometer using experimentally validated Monte Carlo simulations, Nuclear Instruments and Methods in Physics Research, A 556, 498–504 (2006).
15. J. Parus, et al, A dual purpose Compton suppression spectrometer, Journal of Radioanalytical and Nuclear Chemistry, 258 (1), 123-132 (2003).
16. H.M. Badran, T. Sharshar, An experimental method for the optimization of anti-Compton spectrometer, Nuclear Instruments and Methods in Physics Research, A 435, 423-432 (1999).
17. M.A. Bacchi, et al, INAA with Compton suppression: How much can the analysis of plant materials be improved?, Journal of Radioanalytical and Nuclear Chemistry, 271 (2), 345–351(2007).