نوع مقاله : مقاله پژوهشی

نویسندگان

1 بخش استخراج، دانشکده معدن و متالورژی، دانشگاه یزد، صندوق پستی: ۸۹۱۵۸۱۸۴۱۱، یزد - ایران

2 بخش اکتشاف، دانشکده معدن و متالورژی، دانشگاه یزد، صندوق پستی: ۸۹۱۵۸۱۸۴۱۱، یزد - ایران

چکیده

روش الکتریکی به عنوان یک بررسی ژئوفیزیکی می‌تواند پارامترهای زمین‌شناسی شامل خردشدگی، شاخص دگرسانی توده سنگ، درصد اشباع، کیفیت آب زیرزمینی و . . . را به خوبی نمایش دهد. این پارامترها نقش مهمی در طبقه‌بندی مهندسی توده سنگ از طریق تأثیر بر دو شاخص کیفیت توده سنگ (RQD) و شاخص مقاومت زمین‌شناسی (GSI)، کانه‌زایی عناصر و نیز نحوه حفاری دارند. در این مقاله با استفاده از روش سونداژ الکتریکی قائم در لایه‌های زیرسطحی به بررسی تعیین این پارامترها و متعاقباً دو شاخص مذکور در توده‌سنگ‌های آذرآواری آنومالی III کانسار ناریگان پرداخته شده است. نتایج نشان می دهد که مقاومت ویژه الکتریکی تفسیر شده (با استفاده از نرم‌­افزار win2IPI) ارتباط قابل قبولی با میزان شاخص دگرسانی و تا حدی GSI در توده سنگ دارد. با این حال تعیین دقیق GSI و هم‌­چنین RQD با استفاده از این روش ژئوفیزیکی از اعتماد بالایی برخوردار نیست. به بیان ساده­تر با استفاده از یک رابطه ریاضی نمی‌­توان با مقاومت ویژه الکتریکی میزان GSI و شاخص آلتراسیون را تخمین زد.

کلیدواژه‌ها

عنوان مقاله [English]

The application of vertical electrical sounding in geomechanical recognition of host rock mass of anomaly III of Narigan deposit, Bafgh region, Central Iran zone

نویسندگان [English]

  • S.H. Beheshti Bafqi 1
  • A.R. Yarahmadi Bafqi 1
  • A. Gorbani 2
  • H. Gari 2

1 Department of Mining and Metallurgy, Extraction Faculty, Yazd University, P.O.BOX: 8915818411, Yazd - Iran

2 Department of Mining and Metallurgy, Exploration Faculty, Yazd University, P.O.BOX: 8915818411, Yazd - Iran

چکیده [English]

The electrical method as a geophysical survey can show the geological parameters including fragmentation, rock mass alteration index, saturation percentage and groundwater quality. These parameters play an important role in rock mass engineering classification by affecting the rock mass quality design (RQD) and geological strength index (GSI), mineralization of elements and drilling method. In this paper, using the vertical electrical sounding method in subsurface layers, the determination of these parameters and subsequently two mentioned indicators in anomalous III pyroclastic rock masses of Narigan deposit was investigated. The results showed that the interpreted electrical resistivity (using IPI2win software) has an acceptable correlation betweem the degree of alteration index and GSI in the rock mass. However, accurate determination of GSI and RQD using this geophysical method is not very reliable. In other words, using a mathematical equation, it is not possible to estimate the amount of GSI and the alteration index with the electrical resistivity.

کلیدواژه‌ها [English]

  • Vertical electrical sounding
  • Rock mass engineering classification
  • Altration index
  • GSI
  • RQD
  1. A. Palmström, Characterizing rock masses by the RMi for use in practical rock engineering: Part 1: The development of the Rock Mass index (RMi), Tunnelling and Underground Space Technology, 11(2), 175-188 (1996).

 

  1. M. He, Z. Zhang, N. Li, Prediction of fracture frequency and RQD for the fractured rock mass using drilling logging data, Bulletin of Engineering Geology and the Environment, 80(6), 4547-4557 (2021).

 

  1. S. Tzamos, A.I. Sofianos, A correlation of four rock mass classification systems through their fabric indices, International Journal of Rock Mechanics and Mining Sciences, 44(4), 477-495 (2007).

 

  1. H. Xu, et al, Setting up simple estimating equations of TBM penetration rate using rock mass classification parameters, Tunnelling and Underground Space Technology, 115, 104065 (2021).

 

  1. J. Hassanpour, et al, TBM performance analysis in pyroclastic rocks: a case history of Karaj water conveyance tunnel, Rock Mechanics and Rock Engineering, 43(4), 427-445 (2010).

 

  1. G.H. Brimhall, Lithologic determination of mass transfer mechanisms of multiple-stage porphyry copper mineralization at Butte, Montana; vein formation by hypogene leaching and enrichment of potassium-silicate protore, Economic Geology, 74(3), 556-589 (1979).

 

  1. M. Yazdi, et al, Stream-Sediment Geochemical Exploration for Uranium in Narigan Area Central Iran, J. of Nuclear Sci. and Tech, 46, 33-42 (2009).

 

  1. M. Khalili, Comparison of graphic and mathematical methods in interpreting Schlumberger probe and validation of results with the help of well data in Amanabad region of Arak, Master's Thesis. Shahroud University.

 

  1. O.R. Corvallis, D.C. Resistivity methods, Northwest Geophysical (2000).

 

  1. M.H. Loke, Tutorial: 2D and 3D electrical imaging surveys, (2004a).

 

  1. J. Reynold, An Introduction to applied and environmental geophysics, John Wiley. England, 418-490 (1997).

 

  1. G.E. Archie, The electrical resistivity log as an aid in determining some reservoir characteristics, Tran. AIME, 146, 54-67 (1941).

 

  1. G.P. Hersir, K. Árnason, Resistivity of Rocks, Presented at Short Course V on Exploration for Geothermal Resources, organized by UNU-GTP, GDC and KenGen, at Lake Bogoria and Lake Naivasha, Kenya, Oct. 29 – Nov. 19 (2010).

 

  1. A. Ganbari, F. Rezaee, A. Dehghan, Comparison of geotechnical parameters of soil mass in the tunnel including the results of reverse analysis and direct shear testing, Sixth Iranian Conference on Engineering Geology and Environment (2009).

 

  1. E. Molano, M. Salamanca, A. Van Overmeeren, Numerical modelling of standard and continuous vertical electrical soundings, Geophysucal Prospecting, 38, 705-89 (1990).

 

  1. D.U. Deere, Technical Description of Rock Cores for Engineering Purpose, Rock Mechanics and Engineering Geology, 1(1), 16-22 (1963).

 

  1. E. Hoek, P. Marinos, M. Benissi, Applicability of the Geological Strength Index (GSI) Classification for very weak and sheared rock masses, The case of the Athens Schist Formation, Bulletin of Engineering Geology and the Environment, 57, 151-160 (1998). 10.1007/s100640050031.

 

  1. E. Hoek, T.G. Carter, M.S. Diederichs, Quantification of the geological strength index chart, In 47th US rock mechanics/geomechanics symposium. OnePetro (June 2013).

 

  1. W. Zhou, et al, Image Qualifty Assessment: From Error Visibility to Structural Similarity, IEEE Transactions on Image Processing, 13(4), 600-612 (2004).