نوع مقاله : مقاله فنی

نویسنده

پژوهشکده‌ی کاربرد پرتوها، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 3486-11365، تهران - ایران

چکیده

در این پژوهش عملکرد یک آشکارساز گازی میکرو از نوع صفحه موازی، آشکارساز Micromega، برای قطبش­‌سنجی پرتو ایکس ارزیابی شد. بدین منظور از نرم‌‎افزار COMSOL Multiphysics که قابلیت حل معادلات دیفرانسیل را برپایه روش المان محدود دارد استفاده شد. بدین ترتیب که با حل معادله پواسون در هندسه آشکارساز، میدان الکتریکی در نقاط مختلف به‌دست آمد. سپس بهره آشکارساز با استفاده از میدان الکتریکی به‌دست آمده و حل معادله پیوستگی محاسبه شد. نتایج نشان دادند آشکارساز شبیه‌­سازی ‎شده در ولتاژ V 400 بهره‎ای برابر 100 دارد. نتایج به‌دست ‎آمده با نتایج شبیه‌‎سازی این آشکارساز با کد Garfield هم‌خوانی خوبی دارند که مؤید درستی شبیه‎‌سازی انجام ‎شده به روش المان محدود است. این آشکارساز با توجه به ویژگی‌های خوبی مانند توان تفکیک بالا، سطح حساس بزرگ و قابلیت عملکرد در شار بالای ذرات، ابزار مناسبی برای قطبش‎‌سنجی پرتو ایکس می‎‌باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Assessment of a Micromega detector based on Finite Element Method for X-ray polarimetry

نویسنده [English]

  • E. Edalatkhah

Radiation Applications Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box:11365-3486, Tehran-Iran

چکیده [English]

Performance of a micropattern gaseous detector of parallel plate type, a Micromega detector, was assessed for X-ray astronomical studies in this research. For this purpose, COMSOL Multiphysics software which solves differential equations based on Finite Element Method was used. Thus, by solving Poisson equation in the detector geometry, electric field in each point was obtained. Gain of the detector was estimated by using the obtained electric field and solving continuity equation. Results show that simulated detector gain was 100 at voltage of 400 V. Obtained results corresponds well with the results of simulation of the detector with Garfield code which verifies the performed simulation. This detector is a proper tool for X-ray polarimetry with respect to its good characteristics such as high resolution, large area and good performance at high flux.

کلیدواژه‌ها [English]

  • Micropattern gaseous detectors
  • Micromega
  • X-ray telescope
  • COMSOL
  1. E. Costa, et al., An efficient photoelectric x-ray polarimeter for the study of black holes and neutron stars, Nature, 411, 662 (2001).

 

  1. J.H. Oort, T. Walraven, Polarization and composition of the Crab nebula, Bulluten Astronomy Instrument Neth, 12, 285 (1956).

 

  1. E. Bowell, B. Zellner, Planets, stars, and nebulae: studied with photopolarimetry, Proceedings of IAU Colloq., 381 (1974).

 

  1. R. Kulsrud, E. Zweibel, The Origin of astrophysical magnetic fields, Rept. Prog. Phys., 71, 046901 (2008).

 

  1. D. Bernard, High angular precision gamma ray astronomy and polarimery above the pair creation threshold, International Conference on Micropattern Gaseous Detectors, Japan (2011).

 

  1. R. Bellazzinni, et al., A sealed gas pixel detector for x-ray astronomy, Nuclear Instruments and Methods in Physics Research, A., 579, 853 (2007).

 

  1. M. Eingorn, et al., High energy photon polarimeter for astrophysics, Journal of Astronomical Telescopes Instruments and Systems, 4, 011006 (2018).

 

  1. F. Sauli, Micropattern gaseous detectors, Annual Review Nuclear. Part. Sci., 49, 341 (1999).

 

  1. S. Anue, et al., Performance of the micromega detector in the CAST experiment, Nuclear Instruments and Methods in Physics Research, A., 573, 38 (2007).

 

  1. C. Bernet, et al., The 40×40 cm2 gaseous microstrip detector Micromegas for the high-luminosity COMPASS experiment at CERN, Nuclear Instruments and Methods in Physics Research., A. 536, 61 (2005).

 

  1. T. Alexopoulos, et al., Development of large size Micromegas detector for the upgrade of the ATLAS muon system, Nuclear Instruments and Methods in Physics Research, A. 617, 161 (2010).

 

  1. P. Bloser, et al., The MEGA project: Science goals and hardware development, New Astronomy Reviews, 50, 619 (2006).

 

  1. Z. Xiao, et al., Simulation of Micromegas detector by Garfield Program, High Energy Physics and Nuclear Physics, 31, 1049 (2007).

 

  1. S. Fabiani, Instrumentation and Future Missions in the Upcoming Era of X-ray Polarimetry, Galaxies, 6, 54 (2018).

 

  1. Y. Giomataris, et al., Micromegas: a high granularity position sensitive gaseous detector for high particle flux environments, Nuclear Instruments and Methods in Physics Research, A. 376, 29 (1996).

 

  1. D. Bernard, et al., An insulating grid spacer for large area Micromegas chambers, Nuclear Instruments and Methods in Physics Research, A. 481. 144 (2002).

 

  1. Y. Giomataris, Development and prospects of the new gaseous detector “Micromegas”, Nuclear Instruments and Methods in Physics Research, A. 419, 239 (1998).

 

  1. www.comsol.com.

 

  1. F. Chen, Introduction to plasma physics and controlled fusion, Second Ed., Springer, Los Angeles, (1974).

 

  1. M. Sessa, Design and construction of Micromegas detectors for the ATLAS Muon Spectrometer Upgrade, Nuovo Cimento, 39, 266 (2016).