نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی انرژی، دانشگاه صنعتی شریف، صندوق پستی: 1114-14565، تهران- ایران

چکیده

انتظار می‌­رود که روش‌های مبتنی بر اسکن نقطه‌ای نسبت به سایر روش‌های موجود برای پروتون درمانی، عملکرد بهتری در تحویل دز به هدف موردنظر داشته باشد. در این مطالعه از کد شبیه‌ساز GATE، به‌منظور ارزیابی کمیات دزیمتری مهم در پروتون درمانی، مانند پهنا در نیم بیشینه، محل قله، برد و نسبت دز در قله به دز ورودی (درصد دز عمقی) در فرایند پروتون درمانی تحت شرایط یکسان برای روش‌های مبتنی بر اسکن نقطه‌ای و پراکندگی غیرفعال استفاده شده است. فانتومی از جنس آب انتخاب و پارامترهای انرژی سیستم با استفاده از مجموعه‌ای از داده‌های عمق- دز در محدوده انرژی 120-MeV 235 اندازه‌گیری شد. قله‌های براگ با دقت 7/0 میلی‌متر در برد تولید شدند. گسترش قله براگ با مدولاسیون 7 سانتی‌متر و با دقت دامنه 10 میلی‌متر و اختلاف دز به قله به دز ورودی 8 درصد تولید شدند. جهت بررسی تطبیق‌پذیری پرتو پهنا در نیم بیشینه با اختلاف حداکثر 7 درصد بین دو روش ارزیابی شد. در نتیجه بر اساس شبیه‌سازی انجام شده برای سیستم‌های مختلف تحویل پرتو، توانایی بهتر روش اسکن نقطه‌ای در انطباق‌پذیری با حجم هدف، کنترل بهتر روی توزیع دز و دز خارج از تومور کم‌تر نشان داده شد.

کلیدواژه‌ها

عنوان مقاله [English]

Evaluation of dosimetry quantities in passive scattering and spot scanning methods in proton therapy based on GATE simulation

نویسندگان [English]

  • A. Asadi
  • S.A. Hosseini
  • N. Vosoughi

Department of Energy Engineering, Sharif University of Technology, P.O.Box: 14565-1114, Tehran, Iran

چکیده [English]

Thespot-scan based methods are expected to perform better than other methods for proton therapy in delivering the dose to the intended target. In this study, the GATE computer code is used to evaluate important dosimetric quantities in proton therapy, such as Full width at half maximum, peak position, range and peak-to-entrance dose ratio (percentage depth dose) in the proton therapy process under the same conditions based on spot scanning and passive scattering. Water phantom was selected and system energy parameters were measured using a set of depth-dose curve in the energy range of 120 to 235 MeV. Bragg peaks were generated with an accuracy of 0.7 mm in range. Spread out Bragg-peak were produced with 7 cm modulation and 10 mm range accuracy and peak-to-entrance dose ratio difference at an input dose of 8%. To evaluate the versatility of the beam, the Full width at half-maximum was evaluated with a maximum difference of 7% between the two methods. As a result, based on the simulations performed for different beam delivery systems, the ability of the spot scanning method in adapting to the target volume, better control over dose distribution and less extra-tumor dose was demonstrated.

کلیدواژه‌ها [English]

  • Proton therapy
  • Passive scattering
  • Spot scanning
  • GATE
1. R.R. Wilson, Radiological use of fast protons, Radiology, 47(5), 487-491, (1946). J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 68-73 (1892).
 
2. P. ICRU, Recording, and Reporting Proton-Beam Therapy International Commission on Radiation Units and Measurements Report 78, Bethesda, MD, (2007).
 
3. A. Koehler, R. Schneider, J. Sisterson, Range modulators for protons and heavy ions, Nuclear Instruments and Methods, 131(3), 437-440, (1975). R. Nicole, Title of paper with only first word capitalized, J. Name Stand. Abbrev., in press.
 
4. A. Koehler, R. Schneider, J. Sisterson, Flattening of proton dose distributions for large‐field radiotherapy, Medical Physics, 4(4), 297-301 (1977).
 
5. E. Piruzan, N. Vosoughi, H. Mahani, A Fast and Accurate GATE Model for Small Field Scattering Proton Beam Therapy. In 2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA), IEEE, 1-5 (2020, June).
 
6. T. Kanai, et al., Spot scanning system for proton radiotherapy, Medical physics, 7(4), 365-369 (1980).
 
7. T. Furukawa, et al., Performance of the NIRS fast scanning system for heavy‐ion radiotherapy, Medical Physics, 37 (11), 5672-5682 (2010).
 
8. B. Marchand, D. Prieels, B. Bauvir, Ion Beam Applications s.a. (IBA).
 
9. K. Langen, M. Zhu, Concepts of PTV and robustness in passively scattered and pencil beam scanning proton therapy, In Seminars in Radiation Oncology, 28(3), 248-255 (WB Saunders) (2018, July).
 
10. M. Chuong, et al, Pencil beam scanning versus passively scattered proton therapy for unresectable pancreatic cancer, Journal of Gastrointestinal Oncology, 9(4), 687 (2018).
 
11. M.V. Mishra, et al, Proton beam therapy delivered using pencil beam scanning vs. passive scattering/uniform scanning for localized prostate cancer: Comparative toxicity analysis of PCG 001-09, Clinical and Translational Radiation Oncology, 19, 80-86 (2019).
 
12. B.S. Athar, H. Paganetti, Comparison of second cancer risk due to out-of-field doses from 6-MV IMRT and proton therapy based on 6 pediatric patient treatment plans, Radiotherapy and Oncology, 98(1), 87-92 (2011).
 
13. S. Jan, et al, GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy, Physics in Medicine & Biology, 56(4), 881 (2011).
 
14. Geant4-Website 2012b http://geant4.cern.ch/.
 
15. I. Pshenichnov, I. Mishustin, W. Greiner, Distributions of positron-emitting nuclei in proton and carbon-ion therapy studied with GEANT4, Physics in Medicine & Biology, 51(23), 6099 (2006).
 
16. E. Seravalli, et al, Monte Carlo calculations of positron emitter yields in proton radiotherapy, Physics in Medicine & Biology, 57(6), 1659 (2012).
 
17. R. Gaizauskas, GATE User Guide, (1996).
 
18. L. Grevillot, Simulation of a 6 MV Elekta Precise Linac photon beam using GATE/GEANT4, Physics in Medicine & Biology, 56(4), 903 (2011).
 
19. L. Grevillot, A Monte Carlo pencil beam scanning model for proton treatment plan simulation using GATE/GEANT4, Physics in Medicine & Biology, 56(16), 5203 (2011).
 
20. H. Shu, Scanned Proton Beam Performance and Calibration of the Shanghai Advanced Proton Therapy Facility, MethodsX, 6, 1933-1943 (2019).
 
21. S.D. Randeniya, et al., Intercomparision of Monte Carlo radiation transport codes MCNPX, GEANT4, and FLUKA for simulating proton radiotherapy of the eye, Nuclear Technology, 168(3), 810-814 (2009).
 
22. Newhauser, Wayne, et al., Monte Carlo simulations of a nozzle for the treatment of ocular tumours with high-energy proton beams, Physics in Medicine & Biology, 50(22), 5229 (2005).
 
23. M. Engelsman, et al, Commissioning a passive‐scattering proton therapy nozzle for accurate SOBP delivery, Medical Physics, 36(6Part1), 2172-2180 (2009).
 
24. R. Pietrzak, et al, Comparison of depth-dose distributions of proton therapeutic beams calculated by means of logical detectors and ionization chamber modeled in Monte Carlo codes, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 826, 55-59 (2016).
 
25. Khan, Faiz M., and John P. Gibbons, Khan's the physics of radiation therapy, Lippincott Williams & Wilkins, (2014).
 
26. T. Bortfeld, W. Schlegel, An analytical approximation of depth-dose distributions for therapeutic proton beams, Physics in Medicine & Biology, 41(8), 1331 (1996).