نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه فیزیک، دانشکده علوم، دانشگاه ارومیه، صندوق پستی: 165، ارومیه - ایران

2 گروه فیزیک، دانشکده علوم، دانشگاه جامع امام حسین (ع)، صندوق پستی: 1698715461، تهران - ایران

چکیده

اندازه‌گیری پرتو گاما در زمینه‌های مختلف تحقیقاتی نیازمند آشکارسازهای کارآمد است. در زمینه دزیمتری فوتون آشکارساز جرقه‌ای NaI(Tl) به عنوان یکی از  آشکارسازهای سوسوزن معدنی (غیرآلی)، به علت دارا بودن مقدار بالای نور خروجی بسیار حایز اهمیت است.  در این پژوهش سعی گردیده است، با کمک کد مونت‌کارلو (MCNPX) مقدمات مشخصه‌یابی دزیمتری فوتون توسط آشکارساز NaI(Tl) و با بهره‌گیری از روش‌های متفاوت محاسبه دز (تالی‌های 6F، 4*F، 6+F و 8*F) انجام شود. به طور معمول، خروجی یک آشکارساز تابش (شمارش تعداد پالس‌ها)  برای تعیین مقدار دز تابش قابل استفاده نیست. بنابراین با استفاده از روش طیف‌نگار- دزیمتری مبتنی بر روش‌ نرم‌افزاری، برای یافتن ضرایب تبدیل طیف آشکارساز به مقدار کرما هوا در این پژوهش ارایه شده است. در این روش برای یافتن پاسخ دزیمتری تابش با استفاده از شبیه‌سازی کد MCNPX تابع پاسخ یک آشکارساز سوسوزن NaI(Tl) 3"×3" برای چندین تابش مشخص گاما تعیین و سپس توابع ضرایب تبدیل وابسته به انرژی برای محاسبه دز محاسبه گردید. در نهایت، با مقایسه نتایج به دست آمده از داده‌های اندازه‌گیری شده و محاسبات شبیه‌سازی نشان داده شد که روش ارایه شده از دقت بالایی در دزیمتری فوتون برخوردار است.

کلیدواژه‌ها

عنوان مقاله [English]

Study of NaI(Tl) detector dosimetry response based on Spector-Dosimetry method using MCNPX code

نویسندگان [English]

  • S.M. Taheri Balanoji 1
  • H. Zaki Dizaji 2
  • A. Abdi Saray 1

1 Physics Department, Faculty of Science, Urmia University, P.O.Box: 165, Urmia - Iran

2 Physics Department, Faculty of Science, Imam Hossein Comprehensive University, P.O.Box: 169871561, Tehran - Iran

چکیده [English]

Gamma ray measurement in various research fields requires high efficient detectors. In photon dosimetry, NaI(Tl) scintillation detector as one of the inorganic scintillation detector is noticeable, due to have the high amount of light output. In this study, the basics determination of photon dosimetry for the NaI(Tl) scintillation detector utilizing the Monte Carlo code (MCNPX) and using different methods of dose calculation (tally F6, * F4, + F6 and * F8) is studied. Regularly, the output of a radiation detector (counting the number of pulses) cannot be used to determine the radiation dose value. Therefore, in this study the spectro-dosimetry method based on software method is used to find out the value of the conversion coefficients to convert the detector spectrum to the value of air karma. In this method, the radiation dosimetry response is obtained with use of the MCNPX code simulation. The response function of the NaI(Tl) 3"×3" scintillation detector for several specific gamma rays was determined and then the functions of energy dependent conversion coefficients for calculating the dose values were obtained. Finally, with comparison of the measured data and simulation calculations results it is shown that the proposed method has a high accuracy in photon dosimetry

کلیدواژه‌ها [English]

  • Scintillation detectors
  • Photon dosimetry
  • MCNPX code
  • Conversion coefficients
1. G. Knoll, Radiation Detection and Measurement, 3rd Ed. (Wiley, New York, 1999).
 
2. J.A. Wear, et al., Evaluation of Moderately Cooled Pure NaI as a Scintillator for Position-sensitive PET Detectors, IEEE Trans. Nucl. Sci., 43, 1996 (1943).
 
3. N. Tsoulfanidis, S. Landsberger, Measurement & Detection of Radiation, Fourth Ed. (Taylor Francis, 2016).
 
4. T. Kin, J. Goto, M. Oshima, Machine Learning Approach for Gamma-ray Spectra Identification for Radioactivity Analysis, IEEE Trans. Nucl. Sci, 4, 1 (2019).
 
5. K. Kleinknecht, Detectors for Particle Radiation, 2ed Ed. (Cambridge, U.K, 1998).
 
6. F.H. Attix, Introduction to Radiological Physics and Radiation Dosimetry. (John Wiley Sons, Ltd, 2007).
 
7. H. Cember, E. Johnson, Introduction to health physics, 4th Ed. (McGraw-Hill Companies, 2009).
 
8. P. Buzhan, A. Karakash, Yu. Teverovskiy, Silicon photomultiplier and CsI(Tl) scintillator in application to portable H*(10) dosimeter, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip., 912, 245 (2018).
 
9. A. Martin, S. Harbison, An introduction to radiation protection, Fourth Ed. (Chapman and Hall USA, 1996).
 
10. T. Thanh, et al., Verification of Compton Scattering Spectrum of a 662 keV Photon Beam Scattered on a Cylindrical Steel Target using MCNP5 Code, Appl. Radiat. Isot., 105, 294 (2015).
 
11. T. Kin, J. Goto, M. Oshima, Machine Learning Approach for Gamma-ray Spectra Identification for Radioactivity Analysis, IEEE Trans. Nucl. Sci., 4, 1 (2019).
 
12. M. Balcezyk, M. Moszyński, M. Kapusta, Comparison of LaCl3: Ce and NaI(Tl) Scintillators in Gamma-ray Spectroscopy, Nucl. Instrum. Methods Phys. Res Sect., A. 537, 50 (2005).
 
13. J.H. Hubbell, S.M. Seltzer, Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients 1 keV to 20 MeV for elements Z¼ 1 to 92 and 48 additional substances of dosimetric interest, No. PB–95- 220539/XAB, NISTIR–5632. National Inst. of Standards and Technology-PL, Gaithersburg, MD (United States). Ionizing Radiation Div. (1995).
 
14. ICRP. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103, (ICRP 37, 2007).
 
15. ICRU. Measurement of Dose Equivalents from External Photon and Electron Radiation, (Report 47, 1992).
 
16. ICRP. Publication 74: Conversion Coefficients for use in Radiological Protection against External Radiation, Annals of the ICRP, 74. 26, 3 (1996).
 
17. M.W. Lowder, H.L. Beck, W.J. Condon, Spectrometric determination of dose rates from natural and fall-out gamma-radiation in the united states, Nature, 202, 45749 (1964).
 
18. H. Dombrowski, Area Dose Rate Values Derived from NaI or LaBr3 Spectra, Radiation Prot Dosimetry., 160, 269 (2014).
 
19. Monte Carlo N-particle transport code system for multiparticle and high energy applications, Version 2.4.0. LANL Report LA-CP-02-408, (Los Alamos U.S.A, 2002).
 
20. K. Schweda, D. Schmidt, Improved response function calculations for scintillation detectors using an extended version of the MCNP code, Nucl. Instrum. Meth. A, 476, 155 (2002).
 
21. T. Hoang, et al., Optimization of the Monte Carlo simulation model of NaI(Tl) detector by Geant4 code, Applied Radiation and Isotopes, 130, 75 (2017).
 
22. F. Waheed, H. Akyildirim, K. Gunoglu, Monte Carlo simulation of a NaI(Tl) detector efficiency, Radiation Physics and Chemistry, 176, (2020).
 
23. H.X. Shi, et al., Precise Monte Carlo simulation of gamma-ray response functions for an NaI(Tl) detector, Appl. Radiat. Isot. 57, 517 (2002).
 
24. C.M. Salgado, L.E.B. Brandão, R. Schirru, Validation of a NaI(Tl) detector’s model developed with mcnp-x code, Prog. Nucl.Energy, 59, 19 (2012).
 
25. H.Z. Dizaji, Energy Response Improvement for Photon Dosimetry Using Pulse Analysis, CPC. 40, (2016).
 
26. Y. Lotfi, H.Z. Dizaji, F.A. Davani, Detection and Dosimetry Studies on the Response of Silicon Diodes to an 241Am-Be Source, J. Instrum., 9, (2014).
 
27. R.A. Green, Energy and angular anisotropy optimization of p- type diode for in vivo dosimetry in photon beam radiotherapy, Radiat. Prot. Dosim., 116, 152 (2005).
 
28. R.H. Olsher, Y. Eisen, A filter technique for optimizing the photon energy response of a silicon pin diode dosimeter, Radiat. Prot. Dosim, 67, 271 (1996).
 
29. W. Yudong, et al., Comparison of two spectrum-dose conversion methods based on NaI(Tl) scintillation detectors, Journal of Instrumentation, 13, T06004 (2018).
 
30. E. Almaz, A. Akyol, Stripping of the NaI(Tl) detector response function for continuous energy photon spectrum by svd approach, Nuclear Instruments and Methods in Physics Research Section, B. 474, 1 (2020).
 
31. L.J. Meng, D. Ramsden, An inter-comparison of three spectral deconvolution algorithms for gamma-ray spectroscopy, IEEE Nuclear Science Symposium, 2, 691 (1999).
 
32. V. Madar, Direct formulation to Cholesky decomposition of a general nonsingular correlation matrix, Statistics Probability Letters, 103, 142 (2015).