نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده‌ی‌ مهندسی شیمی، نفت و گاز، دانشگاه سمنان، صندوق پستی: 19111-35131، سمنان - ایران

2 پژوهشکده‌ی چرخه سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 8486-11365، تهران- ایران

چکیده

در این بررسی از رزین 7Amberlite XAD- آغشته‌شده به استخراج‌­کننده DEHPA، به عنوان جاذب برای جذب کاتیون‌­های سریم و لانتانیم از محلول­های آبی در سیستم ناپیوسته استفاده شد. شناسایی رزین آغشته ­شده با استفاده از آنالیز SEM و FTIR انجام شد. تأثیرات متغیرهای، مقدار جاذب، زمان و pH بر فرایند جذب دو فلز مطالعه شد. pH بهینه برای هر دو فلز برابر6 و زمان تماس مناسب 180 دقیقه به دست آمد. بیش­‌ترین ظرفیت جذب رزین آغشته شده برای فلز سریم و لانتانیم با استفاده از ایزوترم لانگویر به ­ترتیب برابر 28/8 و 52/5 میلی­گرم بر گرم  محاسبه شد. رزین آغشته ­شده توانایی حذف 9/99‌% سریم و 76/78‌% درصد از لانتانیم در شرایط بهینه، از یک محلول 200 میلی‌گرم بر لیتر را داشت. داده‌­های تعادلی با استفاده از مدل لانگمویر، فرندلیچ، تمکین، دابینین- رادشکویچ ارزیابی شد و برهمین اساس مدل لانگمویر از سه مدل دیگر مناسب‌تر بود. نتابج حاصل از برازش داده‌­های تجربی و مدل­‌های سینتیکی نشان داد، فرایند جذب یون­‌های فلزی مذکور توسط این رزین از هر دو معادله سینتیکی  شبه مرتبه اول و نفوذ درون ذره­ای پیروی می‌­کند. هم‌چنین با توجه به مقادیر مثبت H°Δ و مقادیر منفی ΔG° می­‌توان نتیجه گرفت فرایند جذب این عناصر، گرماگیر و خودبه خودی می­‌باشد. نتایج مطالعه جذب و واجذب در پنج سیکل نشان می­­دهد که رزین فوق از پایداری برخوردار است و تخریب آن کم‌تر از 3 درصد بوده است

کلیدواژه‌ها

عنوان مقاله [English]

Investigation of effective parameters of Lanthanum and Cerium Adsorption from Aqueous solutions using Amberlit XAD-7 resin impregnated With DEHPA

نویسندگان [English]

  • A. Yarahmadi 1
  • M. Nasiri Zarandi 1
  • M.H. Khani 2

1 Depatment of Chemical Engineering, Oil and Gas Engineering, Semnan University, P.O.Box: 35131-19111, Semnan - Iran

2 Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box:11365-8486, Tehran-Iran

چکیده [English]

In This study, an absorbent consisting of DEHPA impregnated onto Amberlite XAD-7 resin was prepared and used for the adsorption of Ce (ΙΙΙ) and La(ΙΙΙ) ions from aqueous solution. The absorbent (XAD-7 + DEHPA) was charaterized by SEM and FTIR analysis Techniques. Several influential variables such as, contact time, pH and  temperature were studied in batch mode of operation. Th results showed that the optimum adsorption condition  were acjieved at pH=6, optimum amount of absorbent and the equilibrium time equal to 0.6 gr and 180 min, respectively. According to the results the adsorption percentage of cerium and lanthanum ions onto the aforementioned resin were 99.99%, 78.76% respectively. Various isotherms models such as Langmuir, Freundlich, Temkin and Dubinin-Radushkevich were used in 25°C to analyze the equilibrium isotherm data and results showed that  Langmuir model had a better agreement with the experimental data. The maximum adsorption capacity of the resin  for cerium and Lanthanum ions were 8.28 mg.g-1, 5.52 mg.g-1 respectively. The kinetic data were fitted to pesudo- frist- order, pesudo-second-order and Intra particle diffusion models. Based on the results, the pesudo- frist- order model and Intra particle diffusion  model described the experimental data as well. Thermodynamic parameters of adsorption such as ΔHº, ΔS°, ΔG° were calcutated. Positive ΔHº and negative ΔG° were indicative of the endothermic and spontaneous nature of the adsorption. The  aforementioned resin shows the stability during the five cycles of adsorption-desorption and it’s  degradation was less than 3%

کلیدواژه‌ها [English]

  • Adsorption
  • Rare earth elements
  • Cerium and lanthanum
  • Solvent impregnated resins
  • Extractor
1. F. Sadri, A.M. Nazari, A. Ghareman, A review on the Cracking, baking and Leaching processes of rare earth element concentrates, J. Rare Earths, 35(8), 739-752 (2017).
 
2. N. Zari, Chemistry and Chemical Engineering Research center of Iran, M. Sc. Thesis, (2016) ( In Persian).
 
3. T.R. Rao, V.M.N. Biju, Trace determination of lanthanides in metallurgical environment and geological samples, Crit. Rev. Chem., 30, 179 (2000).
 
4. R. Torkaman, et al, Synergistic extraction of gadolinium from nitrate media by mixtures of bis (2,4,4-trimethyl pentyl) dithiophophinic acid and di-(2-ethylhexyl) phosphoric acid, J. Ann. Nucl. Energy, 62, 284-290 (2013).
 
5. S. Nishihama, K. Kohata, K. Yoshizuka, Separation of lanthanum and cerium using a coated solvent impregnated resin, J. Sep. Purify. Technol, 118, 511-518 (2013).
 
6. C. Araneda, et al, Removal of metal ions from aqueous solvents by sorption onto microcapsules prepared by copolymerization of ethylene glycol dimethar cylate with styrene, J. Sep. Purify. Technol, 63, 517-523 (2008).
 
7. N. Kabay, et al, Solvent -impregnated resins(SIRs) Methods of preparation and their applications, J. React. Funct. Polym, 70(8), 484-496 (2013).
 
8. E.A. EL-Sofany, Removal of lanthanum and gadolinium from nitvate medium using Aliqut-336 impregnated on to Amberlite XAD-4, J. Hazard Matter, 153(3), 948-954 (2008).
 
9. S. Inan, et al, Extraction and separation studies of rare earth elements using cyanex 272 impregnated Amberlite XAD-7 resin, J. Hydrometallurgy, (56), 14-27 (2018).
 
10. A. Rahmati, A. Ghaemi, M. Samad Fam, Kinetic and thermodynamic Studies of Urainium adsorption using Amberlite IRA-910 resin, J. Ann. Nucl. Enrgy, (39), 42-48 ( 2012).
 
11. V.K. Jain, A. Hand, R. Pandya, Polymer supported calix[4] arene-semicarbazone derivative for separation and preconcentration of La(ΙIΙ), Ce(IΙI), Th(IV) and U(VI), J. React. Funct. Polym, (51), 101-110 (2002).
 
12. H. Bendiaf, O. Abderrahim, D. Villemin, Studies on the for Feasibility of using a novel phosphonate resin for the separation of U(VI), La(ΙIΙ), Ce(IΙI) and Pr(IΙI) from aqueous solation, J. Radioanal. Nucl. Chem, (2017).
 
13. F. Xie, et al, A critical review on solvent extraction of rare earths from a aqueous solutions, J. Miner. Eng, 56, 10-28 (2014). 
 
14. K.A. Rabie, A group separation and purifications of Sm, Eu, Gd, from Egyotian beach monazite Mineral using solvent exratction, J. Hdrometallurgy, 85, 81-86 (2007).
 
15. R.S. Juong, H.C. Lin, Metal sorption with       extractant- impregnated Macroporous resins. 1. Particle diffusion kinetics, J. Chem. Tech. Bio. Technol, 62, 132-140 (1955).
 
16. R.S. Juong, M.L. Chen, Competitive soroption of Metal ions from binary sulfate solution with solvent – impregnated resins, J. React. Funct. Polym, 34, 93-102 (1997).
 
17. S. Sert, et al, Investigation of sorption behavior of La, Pr, Nd, Sm, Eu, and Gd on D2EHPA-impregnated XAD7 resin in nitric acid medium, J. Sep. Sci., 25, 145-155 (2019).
 
18. F. Soleymani, M. Sc. Thesis., Tarbiat Modares University, (2015) ( In Persian).
 
19. S. Abbasi Zadeh, A.R. Keshtkar, M.A. Mossavian, Investigation of effective parameters on Thorium adsorption by nanohybrid adsorbent of polyvinyl alcohol/ titanium oxide functionalized with amine groups, J. Nucl. Sci. Tech., 71, 1-14 (2015).
 
20. R. Singh, et al., Biosorption optimization of lead, cadmium and copper using response surface methodology and applicability in isotherms and thermodynamics modeling, J. Hazard. Mater, 174, 623-634 (2010).
 
21. E. Alonso, et al., Evaluting rare earth element availability: a case with revolutionary demand from clean technologies, Environmental Science & Technology., 6, 3406-3114 (2012).
 
22. D. Guyonnet, et al., Material flow analysis applied to rare earths elements in Europe, J. Clean. Produ., 5, 655-663 (2015).
 
23. F. Ardestani, M. Sc. Thesis, Semnan University, (2015) ( In persian).
 
24. V. Jain, et al., Solid-phase extractive preconcentration and separation of lanthanum (III) and cerium (III) using a polymer-supported chelating calix [4] arene resin, J. Anal. Chem., 62, 104-112  (2007).
 
25. A. Jordens, Y.P. Cheng, K.E. Waters, A review of the beneficiantion of miner, J. Eng. Rep., 41, 97-114 (2013).
 
26. Z.H.U. Lili, C.H.E.N. Ji, Adsorption of Ce in nitric acid medium by imidazolium anion exchange resin, J. Rare. Earths., 29, 969-973 (2011).
 
27. F. Habashi, Hand book of Extractive Metallurgy, Vol. 3. 99. (WYLEY-VCH. New York, 1997).
 
28. N.V. Thakur, Separation of Rare earths by Solvent Extraction Mineral processing and Extractive Review, J.  Rare. Earths., 21, 227-306 (2000).
 
29. S.S. Dubey, B.S. Rao, Removal of cerium ion from aqueous solution by hydrous ferric oxide-A radiator study, J. Hazard. Mater., 186, 1028-1032 (2011). 
 
30. H.S. Gupte, et al., Azo resorcin [4] calixpyrrole grafted Amberlite XAD-2 polymer, an efficient solid phase extractant for separation and preconcentration of La (III) and Ce (III) from natural geological samples, J. Incl. Phenom. Macrocycl. Chem., 81, 409-422 (2015).  
 
31. D. Baybas, U. Ulusoy, The use of Polyacrylamide-aluminosilicate composites for Thorium adsorptio, J. Appl. Clay. Sci., 51, 138-146 (2011).
 
32. A. Rahmati, A. Ghaemi, M. Samad Fam, Kinetic and thermodynamic Studies of Urainium adsorption using Amberlite IRA-910 resin, J. Annu. Nucle. Eng., 39, 42-48 (2012).