نوع مقاله : مقاله پژوهشی

نویسندگان

پژوهشکده‌ی کشاورزی هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی، صندوق پستی: 1498-31485، کرج- ایران

چکیده

القای ماده‌­زایی در ماهیان خاویاری، دارای ارزش زیادی است، لذا هدف از انجام این پژوهش القای ماده‌­زایی در تاسماهی شیپ
(Acipenser nudiventris) به وسیله پرتوتابی گاما به اسپرم هترولوگ ماهی قره­برون ( Acipenser persicus) بود. در ابتدا استحصال اسپرم انجام، و در مرحله بعد پرتوتابی با دزهای 45/0، 6/0، 75/0، 9/0 و 05/1 کیلوگری انجام شد. سپس از ماهی مولد­ ماده تخمک استحصال و لقاح در گروه­‌هایی به صورت جداگانه انجام و از شوک سرمایی برای القای پلوئیدی استفاده شد. گروه‌­های آزمایشی شاهد (لقاح اسپرم و تخمک معمولی ماهی شیپ)، هیبرید (لقاح اسپرم معمولی قره­‌برون و تخمک معمولی ماهی شیپ)، هاپلوئید (لقاح اسپرم پرتوخورده قره‌­برون و تخمک معمولی ماهی شیپ)، و تریپلوئید (لقاح اسپرم و تخمک معمولی ماهی شیپ با شوک حرارتی)، در نظر گرفته شدند. تخم‌­ها‎ی‎ لقاح یافته تا زمان تفریخ به انکوباتور انتقال داده شدند و درصد لقاح و  تفریخ پس از طی دوره تکاملی در انکوباسیون محاسبه شد. استخراج DNA از لارو گروه­‌های مختلف انجام و درصد موفقیت ماده‌­زایی با استفاده از  مارکرهای میکروستلایت 9 Afuو 68Afu انجام شد. نتایج نشان داد که گروه 9/0 کیلوگری میزان لقاح و تفریخ بیش‌تری داشته است (05/0>(P. سنجش وراثت نشان داد که ماده‌­زایی در گروه‌­های مختلف با موفقیت انجام شده است. با توجه به این نتایج می‌­توان جمع‌­بندی کرد که ماده­‌زایی در این ماهی به طور موفقیت­‌آمیزی انجام شده است و با توجه بازده بالاتر دز 9/0 کیلوگری پرتو گاما به عنوان دز پیشنهادی برای ماده‌­زایی در این گونه توصیه می‌­شود.

کلیدواژه‌ها

عنوان مقاله [English]

Application of nuclear technology in maternal inheritance of ship sturgeon (Acipenser nudiventris)

نویسندگان [English]

  • Gh. Shahhosseini
  • A. Neissi

Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 31485-1498, Karaj - Iran

چکیده [English]

Induction of Gynogenesis in sturgeon is important, therefore, the aim of this study was gynogenesis inducing in Ship sturgeon Acipenser nudiventris by gamma radiation to the heterologous sperm of Persian sturgeon Acipenser persicus. At first, sperm was extracted, and in the next stage, irradiation was performed with doses of 0.45, 0.6, 0.75, 0.9 and 1.05 kGy. Then oocytes were obtained from fish and fertilized by different dosages of irradiated sperms and cold shock was used to ploidy inducing. Control group (fertilization of normal sperm and oocytes), hybrid (fertilization of normal Persian sturgeon sperm and ship sturgeon oocytes), haploid (fertilization of irradiated sperm and normal ship oocytes), and triploid (fertilization of ship sperm and oocytes with cold temperature shock) were considered. The fertilized eggs were transferred to the incubator until hatching and the percentage of fertilization and hatching was calculated after the evolutionary period in the incubation. DNA was extracted from different group’s larvae and the success rate of inoculation was determined using Afu9 and Afu68 microsatellite markers. The results showed that the 0.9 kGy group had a higher rate of fertilization and hatching (P <0.05). Inheritance assessment showed that gynogenesis was performed successfully in different groups. It can be concluded that gynogenesis in this fish has been done successfully and due to the higher efficiency, 0.9 kGy dose, it was recommended for this species gynogenesis.

کلیدواژه‌ها [English]

  • Ship sturgeon
  • Gynogenesis
  • Gamma Ray
  • Afu9 and Afu68 sequences
1. R.P. Khodorevskaya, et al., Present status of commercial stocks of sturgeons in the Caspian Sea basin, In Sturgeon Biodiversity and Conservation, 209-219 Springer (1997).
 
2. J. HOLČÍK, In the catchment area of the southern caspian sea, Biologica, 40, 114-199 (1996).
 
3. H. Abdolhay, Sturgeon stocking programme in the Caspian Sea with emphasis on Iran, Fao Fisheries Technical Paper, 429, 133 (2004).
 
4. M.A. Webb, S. Doroshov, Importance of environmental endocrinology in fisheries management and aquaculture of sturgeons, General and Comparative Endocrinology, 170, 313-321 (2011).
 
5. J.H. Connell, E. Orias, The ecological regulation of species diversity, The American Naturalist, 98, 399-414 (1964).
 
6. P.D. Greany, J.E. Carpenter, K.-H. Tan, Use of nuclear techniques in biological control, Paper presented at the Area-wide control of fruit flies and other insect pests, Joint proceedings of the international conference on area-wide control of insect pests, 28 May-2 June, 1998 and the Fifth International Symposium on Fruit Flies of Economic Importance, Penang, Malaysia, 1-5 June, (1998).
 
7. N. Sun, S. Lee, K.B. Song, Characterization of a carotenoid-hyperproducing yeast mutant isolated by low-dose gamma irradiation, International Journal of Food Mmicrobiology, 94, 263-267 (2004).
 
8. M.M. Husseiny, H.F. Madsen, Sterilization of the navel orangeworm, Paramyelois transitella (Walker), by gamma radiation (Lepidoptera: Phycitidae): University of Calif (1964).
 
9. L. Andrews, M. Jahncke, K. Mallikarjunan, Low dose gamma irradiation to reduce pathogenic Vibrios in live oysters (Crassostrea virginica), Journal of Aquatic Food Product Technology, 12, 71-82 (2003).
 
10. M. Parikka, et al., Mycobacterium marinum causes a latent infection that can be reactivated by gamma irradiation in adult zebrafish, (2012).
 
11. K.-I. Ijiri, Gamma-ray irradiation of the sperm of the fish Oryzias latipes and induction of gynogenesis, Journal of Radiation Research, 21, 263-270 (1980).
 
12. D. Chourrout, B. Chevassus, F. Herioux, Analysis of an Hertwig effect in the rainbow trout (Salmo gairdneri Richardson) after fertilization with γ-irradiated sperm, Reproduction Nutrition Développement, 20, 719-726 (1980).
 
13. H. Komen, G.H. Thorgaard, Androgenesis, gynogenesis and the production of clones in fishes: a review, Aquaculture, 269, 150-173 (2007).
 
14. J.G. Christopher, A.G. Murugesan, N. Sukumaran, Optimization of UV treatment to induce haploid androgenesis in the stinging catfish, Heteropneustes fossilis, International Aquatic Research, 4, 1-8 (2012).
 
15. D. Chourrout, E. Quillet, Induced gynogenesis in the rainbow trout: sex and survival of progenies production of all-triploid populations, Theoretical and Applied Genetics, 63, 201-205 (1982).
 
16. F. Piferrer, et al., Induction of gynogenesis in the turbot (Scophthalmus maximus):: effects of UV irradiation on sperm motility, the Hertwig effect and viability during the first 6 months of age, Aquaculture, 238, 403-419 (2004).
 
17. J.A. Luckenbach, et al., Induction of diploid gynogenesis in southern flounder (Paralichthys lethostigma) with homologous and heterologous sperm, Aquaculture, 237, 499-516 (2004).
 
18. A.P. Breen, J.A. Murphy, Reactions of oxyl radicals with DNA, Free Radical Biology and Medicine, 18, 1033-1077 (1995).
 
19. M. Dizdaroglu, et al., Free radical-induced damage to DNA: mechanisms and measurement, Free Radical Biology and Medicine, 32, 1102-1115 (2002).
 
20. J. Ward, The yield of DNA double-strand breaks produced intracellularly by ionizing radiation: a review, International Journal of Radiation Biology, 57, 1141-1150 (1990).
 
21. H.R. Devlin, Y. Nagahama, Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental inf luences, Aquaculture, 208, 191-364 (2002).
 
22. J.E. Mank, J.C. Avise, Evolutionary diversity and turn-over of sex-determination in teleost fishes, Sexual Development, 3, 60-67 (2009).
 
23. M. Matsuda, et al., Oryzias curvinotus has DMY, a gene that is required for male development in the medaka, O. Latipes. Zoological Sciences, 20, 159-161 (2003).
 
24. M. Matsuda, et al., DMY gene induces male development in genetically female (XX) medaka fish, Proceedings of the National Academy of Sciences of the United States of America, 10, 3865-3870 (2007).
 
25. T. Myosho, et al., Tracing the emergence of a novel sexdetermining gene in medaka, Oryzias Luzonensis, Genetics, 191, 163-170 (2012).
 
26. T. Kamiya, W, et al., A Trans-Species Missense SNP in Amhr2 Is Associated with Sex-determination in the Tiger Pufferfish, Takifugu rubripes (Fugu), PLoS Genetics, 8, e1002798 (2012).
 
27. H. Kuhl, et al., A 180 My-old female-specific genome region in sturgeon reveals the oldest known vertebrate sex determining system with undifferentiated sex chromosomes, BioRxiv (2020).
 
28. A. Yano, et al., The sexually dimorphic on the Y-chromosome gene (sdY) is  conserved male-specific Y-chromosome sequence in many salmonids, Evolutionary Applications, 1752-4571 (2012).
 
29. S. Wuertz, et al., Sex determination in sturgeon, Sex Control in Aquaculture, 645-668 (2018).
 
30. D. Fopp-Bayat, et al., Disturbances in the ploidy level in the gynogenetic sterlet Acipenser ruthenus, Journal of Applied Genetics, 58, 373-380 (2017).
 
31. M.H. Saber, et al., Induction of meiotic gynogenesis in ship sturgeon Acipenser nudiventris using UV-irradiated heterologous sperm, Journal of Applied Genetics, 55, 223-229 (2014).
 
32. S.D. Mims, et al., Induced meiotic gynogenesis of paddlefish Polyodon spathula, Journal of the World Aquaculture Society, 28, 334-343 (1997).
 
33. A.B. Welsh, M. Blumberg, B. May, Identification of microsatellite loci in lake sturgeon, Acipenser fulvescens, and their variability in green sturgeon, A. medirostris, Molecular Ecology Notes, 3, 47- 55 (2003).
 
34. M.H. Saber, et al., Induction of meiotic gynogenesis in ship sturgeon Acipenser nudiventris using UV-irradiated heterologous sperm, Journal of Applied Genetics, 55, 223-229 (2014).
 
35. B. Taneh, B. Abtahi, R.M. Nazari, In vitro assessment of final oocyte maturation index (GVBD) in Persian Sturgeon and broodstock selection, Experimental Animal Biology, 1, 31-40 (2012).
 
36. S. Dorafshan, M.R. Kalbassi, Effects of triploidy on the Caspian salmon Salmo trutta caspius haematology, Fish Physiol Biochem, 34, 195-200 (2008).
 
37. S. Okunsebor, et al., Effect of temperature on fertilization, hatching and survival rates of Heterobranchus bidorsalis eggs and hatchlings, Current Journal of Applied Science and Technology, 372-376 (2015).
 
38. M. Sswat, et al., Growth performance and survival of larval Atlantic herring, under the combined effects of elevated temperatures and CO2, PLoS One, 13, e0191947 (2018).
 
39. M. Pourkazemi, Molecular and biochemical genetic analysis of sturgeon stocks from the South Caspian Sea, University of Wales Swansea (1996).
 
40. T.a. Pandian, R. Koteeswaran, Ploidy induction and sex control in fish, Hydrobiologia, 384, 167-243 (1998).
 
41. D. Fopp‐Bayat, K. Ocalewicz, Activation of the albino sterlet Acipenser ruthenus eggs by UV‐irradiated bester hybrid spermatozoa to provide gynogenetic progeny, Reproduction in Domestic Animals, 50, 554-559 (2015).
 
42. L. Zhou, Y. Wang, J.-F. Gui, Genetic evidence for gonochoristic reproduction in gynogenetic silver crucian carp (Carassius auratus gibelio Bloch) as revealed by RAPD assays, Journal of Molecular Evolution, 51, 498-506 (2000).
 
43. A. Van Eenennaam, et al., Brief communication. Evidence of female heterogametic genetic sex determination in white sturgeon, Journal of Heredity, 90, 231-233 (1999).
 
44. S. Flynn, et al., Gynogenesis and sex determination in shortnose sturgeon, Acipenser brevirostrum Lesuere, Aquaculture, 253, 721-727 (2006).
 
45. D. Fopp-Bayat, Meiotic gynogenesis revealed not homogametic female sex determination system in Siberian sturgeon (Acipenser baeri Brandt), Aquaculture, 305, 174-177 (2010).
 
46. D. Fopp-Bayat, P. Hliwa, K. Ocalewicz, Presence of gynogenetic males suggests a female heterogamety in sterlet Acipenser ruthenus L, Animal Reproduction Science, 189, 110-118 (2018).
 
47. T.J. Benfey, Use of all-female and triploid salmonids for aquaculture in Canada, Bulletin of the Aquaculture Association of Canada, 96-2, 6-8 (1996).
 
48. M. Yamashita, et al., A tripolar spindle formed at meiosis-I assures the retention of the original ploidy in the gynogenetic triploid crucian carp (ginbuna), Carassius auratus langsdorfii, Development Growth and Differentiation, 35, 631-636 (1993).
 
49. N. Omoto, et al., Sex ratios of triploids and gynogenetic diploids induced in the hybrid sturgeon, the bester (Huso huso female × Acipenser ruthenus male), Aquaculture, 245, 39-47 (2005).