نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زیست‌شناسی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، صندوق پستی: ، تهران - ایران

2 پژوهشکده چرخه سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 8486-11365، تهران- ایران

چکیده

باکتری 7Shewanella RCRI توانایی حذف اورانیم در شرایط بی‌­هوازی را دارد. در این پژوهش، عملکرد باکتری‌های کلونی کشت یک و ده روزه از نظر توان حذف اورانیم، تغییرات مورفولوژی و زنده‌­مانی باکتری در محلول بی‌­هوازی حاوی اورانیم و نیترات بررسی شده است. نتایج نشان می­‌دهد که باکتری یک روزه، رشد بیش­‌تری نسبت به باکتری ده روزه در غلظت­ اورانیم 2 میلی‌مولار دارد، در حالی‌­که درصد حذف اورانیم باکتری ده روزه بیش‌­تر از باکتری یک روزه بوده است. به نظر می‌رسد که این مهم توسط توده‌های باکتری مرده و به‌روش جذب زیستی انجام گرفته است. احیای زیستی اورانیم در باکتری‌های کشت یک روزه، در آنالیز‌های XRD، اسپکتروفوتومتری و بررسی‌ مورفولوژی به‌وسیله میکروسکوپ نوری اثبات گردید. نمونه‌های 4 ماهه و 9 ماهه از کلونی یک روزه، به ترتیب 96­% و 99­% حذف اورانیم داشتند که نشان­‌دهنده‌ی پایداری حذف اورانیم محلول در بازه‌های زمانی طولانی می‌باشد. عملکرد نمونه‌های یک روزه و 4 ماهه حاوی نیترات و اورانیم نیز توان حذف اورانیم را در حضور نیترات با غلظت 20 گرم در لیتر تأیید‌ نموده است. این نتایج توان این باکتری بومی در حذف زیستی اورانیم در حضور نیترات را نشان می‌دهد و این باکتری را به عنوان گزینه‌ای مناسب برای مطالعات آینده معرفی می‌کند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigating survival, morphology and bioremediation of uranium in native Shewanella RCRI7 from one-day and ten-day colonies

نویسندگان [English]

  • E. Rastkhah 1
  • F. Fatemi 2
  • P. Maghami 1

1 Department of Biochemistry, Faculty of Sciences, Islamic Azad University, P.O.Box: , Tehran - Iran

2 Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box:11365-8486, Tehran-Iran

چکیده [English]

Shewanella RCRI7 has the ability to reduce uranium under anaerobic conditions. Bacterial function of one- and ten-day cultured colonies in terms of uranium removal ability, morphological changes and viability in anaerobic solution containing uranium and nitrate has been investigated in this study. The results showed that one-day bacteria grew faster than ten-day bacteria at a concentration of 2 mM Uranium, while the uranium removal percentage of ten-day bacteria is higher than that of one-day bacteria, which are adsorbed by the bacterial masses through biosorption. Bioremediation of uranium in one-day cultured bacteria was confirmed by XRD analysis, spectrophotometry and morphological examination by light microscopy. 4-month and 9-month samples from one-day colony had 96% and 99% uranium removal, respectively, indicating the stability of soluble uranium removal over long periods of time. One-day and 4-month samples containing nitrate and uranium also confirmed the ability to remove uranium in the presence of nitrate at a concentration of 20 g /L, which shows the ability of this native bacterium to reduce the uranium in the presence of nitrate, introducing this as a suitable option for future studies.

کلیدواژه‌ها [English]

  • Shewanella RCRI7
  • Uranium Bioremediation
  • Spectrophotometry
  • Morphology
  • XRD
1. A. Abdelouas A, et al. Reduction of U (VI) to U (IV) by indigenous bacteria in contaminated ground water, Journal of Contaminant Hydrology., 35, 217 (1998).
 
2.   K. Nealson, D. Saffarini, Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation, Annual Reviews in Microbiology., 48, 311 (1994).
 
3.   S. Pirbadian, et al. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components, Proceedings of the National Academy of Sciences., 111, 12883 (2014).
 
4.   A. Zaheri Abdehvand, et al. Removal of U (VI) from aqueous solutions using Shewanella sp. RCRI7, isolated from Qurugöl Lake in Iran, Radiochimica Acta., 105, 109 (2017).
 
5.   A. Ayangbenro, O. Babalola, A new strategy for heavy metal polluted environments: a review of microbial biosorbents, International Journal of Environmental Research and Public Health., 14, 94 (2017).
 
6.   Tarhriz V, et al. Isolation and characterization of some aquatic bacteria from Qurugol Lake in Azerbaijan under aerobic conditions, Advances in Environmental Biology., 9, 3173 (2011).
 
7.   P. Subramanian, S. Pirbadian, E. Naggar, Ultrastructure of Shewanella oneidensis MR-1 nanowires revealed by electron cryotomography, Proceedings of the National Academy of Sciences., 115, 3246 (2018).
 
8.   B. Gu, et al. Bioreduction of uranium in a contaminated soil column, Environmental Science & Technology., 39, 4841 (2005).
 
9.   I. Zinicovscaia, et al., Selective metal removal from chromium-containing synthetic effluents using Shewanella xiamenensis biofilm supported on zeolite, Environmental Science and Pollution Research., 11, 1 (2020).
 
10. A. Abdehvand, et al., Removal of U (VI) from aqueous solutions using Shewanella sp. RCRI7, isolated from Qurugöl Lake in Iran, Radiochimica Acta., 105, 109 (2017).
 
11. V. Tarhriz, et al., Isolation and characterization of naphthalene-degradation bacteria from Qurugol Lake located at Azerbaijan, Biosci Biotechnol Res Asia., 11, 715 (2014).
 
12. R. Ghasemi, et al., Evaluation of mtr cluster expression in Shewanella RCRI7 during uranium removal, Archives of Microbiology., 202, 2711 (2020).
 
13. K.R. Czerwinski K.R. MF. Polz, Uranium enrichment using microorganisms, (Google Patents; 2008).
 
14. R. Bencheikh-Latmani, et al., Global transcriptional profiling of Shewanella oneidensis MR-1 during Cr (VI) and U (VI) reduction, Appl Environ Microbiol, 71, 7453 (2005).
 
15. T. Kasai, et al., Transcriptional mechanisms for differential expression of outer membrane cytochrome genes omcA and mtrC in Shewanella oneidensis MR-1, BMC Microbiology, 15, 68 (2015).
 
16. H. Wang, et al, Metabolomic analyses show that electron donor and acceptor ratios control anaerobic electron transfer pathways in Shewanella oneidensis, Metabolomics, 9, 642 (2013).
 
17. G. Zhou, et al, Combined effect of loss of the caa 3 oxidase and Crp regulation drives Shewanella to thrive in redox-stratified environments, The ISME Journal, 7, 1752 (2013).
 
18. R. Abboud, et al, Low-temperature growth of Shewanella oneidensis MR-1, Appl Environ Microbiol, 71, 811 (2005).
 
19. L. Newsome, K. Morris K. The biogeochemistry and bioremediation of uranium and other priority radionuclides, Chemical Geology, 363, 164 (2014).
 
20. H. Zhang, et al, Impacts of nitrate and nitrite on physiology of Shewanella oneidensis, PLoS One, 626, 4 (2013).
 
21. J. Wall, et al, Uranium reduction, Annu. Rev. Microbiol, 60, 149 (2006).
 
22. B. Mohapatra, et al, Biochemical and genomic facets on the dissimilatory reduction of radionuclides by microorganisms–A review, Minerals Engineering, 23, 8 (2010).
 
23. H. Fu, et al, Dissociation between iron and heme biosyntheses is largely accountable for respiration defects of Shewanella oneidensis fur mutants, Appl Environ Microbiol, 84, 39 (2018).
 
24. M. Zarei, et al, U (VI) tolerance affects Shewanella sp. RCRI7 biological responses: growth, morphology and bioreduction ability, Archives of Microbiology, 204, 13 (2022).
 
25. C. Astudillo, F. Acevedo, Adaptation of Sulfolobus metallicus to high pulp densities in the biooxidation of a flotation gold concentrate, Hydrometallurgy, 92, 11 (2008).
 
26. P. Prabhakaran, et al, Microbial stress response to heavy metals in the environment, Rsc Advances, 6, 111 (2016).  
 
27. S. Lai, et al. Swarming motility: a multicellular behaviour conferring antimicrobial resistance, Environmental microbiology, 11, 126 (2009).  
 
28. T. Manobala, S. Shukla, A new uranium bioremediation approach using radio-tolerant Deinococcus radiodurans biofilm, Journal of Biosciences, 44, 122 (2019).
 
29. A. Francis A, C. Dodge, Bioreduction of uranium (VI) complexed with citric acid by Clostridia affects its structure and solubility, Environmental Science & Technology, 42, 8277 (2008). 
 
30. W. Gao, Aj. Francis, Fermentation and hydrogen metabolism affect uranium reduction by clostridia, (ISRN biotechnology, 2013).
 
31. B.L. Dutrow BL, C.M. Clark, X-ray powder diffraction (XRD), (Geochemical Instrumentation and Analysis, 2012).
 
32. T. Khijniak, et al, Reduction of uranium (VI) phosphate during growth of the thermophilic bacterium Thermoterrabacterium ferrireducens, Appl Environ Microbiol, 71, 6423 (2005).
 
33. Y. Roh, S. Liu, Isolation and characterization of metal-reducing Thermoanaerobacter strains from deep subsurface environments of the Piceance Basin, Colorado, Appl Environ Microbiol, 68, 6013 (2002).   
 
34. P. Wang, et al. Effects of riboflavin and AQS as electron shuttles on U (vi) reduction and precipitation by Shewanella putrefaciens, RSC advances, 54, 30692 (2018).  
 
35. M.J. Kang, et al. Precipitation and adsorption of uranium (VI) under various aqueous conditions, Environmental Engineering Research, 7, 149 (2002).