1. M. Laraia, L.V. Velzen, Radioactive contamination and other environmental impacts of waste from nuclear and conventional power plants, medical and other industrial sources, (Woodhead Publishing Series in Energy), 35-56 (2015).
2. Y.J. Gwon, et al., Prussian blue decoration on polyacrylonitrile nanofibers using polydopamine for effective Cs ion removal, J. Industrial & Engineering Chemistry Research, 59(11), 4872 (2020).
3. A.M.S. El-Din, T. Monir, M.A. Sayed, Nano-sized Prussian blue immobilized costless agro-industrial waste for the removal of cesium-137 ions, J. Environmental Science and Pollution Research, 26(25), 25550 (2019).
4. H.M. Yang, et al., Hollow flower-like titanium ferrocyanide structure for the highly efficient removal of radioactive cesium from water, J. Chemical Engineering Journal, 392, 123713 (2020).
5. J. Wang, Sh. Zhuang, Y. liu, Metal hexacyanoferrates-based adsorbents for cesium removal, J. Coordination Chemistry Reviews, 374, 430 (2018).
6. E. Calabrese, Improving the scientific foundations for estimating health risks from the Fukushima incident, J. PANS, 108(49), 19447 (2011).
7. Y. Namiki, et al., Inorganicorganic magnetic nanocomposites for use in preventive medicine: A rapid and reliable elimination system for cesium, J. Pharmaceutical Research, 29(5), 1404 (2012).
8. M. Abtahi, et al., Removal of cesium through adsorption from aqueous solutions: a systematic review, J. Advances in Environmental Health Research, 6(2), 96 (2018).
9. G.R. Chen, et al., Prussian blue (PB) granules for cesium (Cs) removal from drinking water, J. Separation and Purification Technology, 143, 146 (2015).
10. Y. Okamura, et al., Cesium removal in freshwater using potassium cobalt hexacyanoferrate-impregnated fibers, J. Radiation Physics and Chemistry, 94(1), 119 (2014).
11. J. Jang, D.S. Lee, Enhanced adsorption of cesium on PVA-alginate encapsulated Prussian bluegraphene oxide hydrogel beads in a fixed-bed column system, J. Bioresource Technology, 218, 294 (2016).
12. K. Vijayaraghavan, Y.S. Yun, Bacterial biosorbents and biosorption, J. Biotechnology Advances, 26(3), 266 (2008).
13. J.A.S. Costa, et al., Synthesis, functionalization, and environmental application of silica-based mesoporous materials of the M41S and SBA-n families: A review, J. Journal of Environmental Chemical Engineering, 9, 105259 (2021).
14. Sh. Y, et al, Recent advances of SBA-15-based composites as the heterogeneous catalysts in water decontamination: A mini-review, J. Journal of Environmental Management, 254, 109787 (2020).
15. E. Vunain, A.K. Mishra, B.B. Mamba, Dendrimers, mesoporous silicas and chitosan-based nanosorbents for the removal of heavymetal ions: A Review, J. International Journal of Biological Macromolecules, 86, 570 (2016).
16. S. Santos, et al., Synthesis and characterization of ordered mesoporous silica (SBA-15 and SBA-16) for adsorption of biomolecules, J. Microporous and Mesoporous Materials, 180, 284 (2013).
17. R. Narayan, Mesoporous silica nanoparticles: a comprehensive review on synthesis and recent advances, J. Pharmaceutics, 10, 118 (2018).
18. X. Liu, et al, Synthesis of large pore-diameter SBA-15 mesostructured spherical silica and its application in ultra-high-performance liquid chromatography, J. Journal of Chromatography A, 1216, 7767 (2009).
19. T. Yasmin, K. Muller, Synthesis and characterization of surface modified SBA-15 silica materials and their application in chromatography, J. Journal of Chromatography A, 1218, 6464 (2011).
20. M. Wang, et al, Study on adsorption mechanism of silicate adsorbents with different morphologies and pore structures towards formaldehyde in water, J. Colloids and Surfaces A, 599, 124887 (2020).
21. P.H.K. Charan, G.R. Rao, Textural and morphological studies of transition metal doped SBA-15 by co-condensation method, J. Journal of Chemical Sciences, 127(5), 909 (2015).
22. H. Fakhri, A.R. Mahjoub, H. Aghayan, Effective adsorption of Co2+ and Sr2+ ions by 10‑tungsten‑2‑molybdophosphoric acid supported amine modified magnetic SBA‑15, J. Journal of Radioanalytical and Nuclear Chemistry, (2019), doi.org/10.1007/s1096 7-019-06595-6.
23. H. Aghayan, A.R. Khanchi, A.R. Mahjoub, Synthesis and characterization of cesium molybdo vanado phosphate immobilized on platelet SBA-15: An efficient inorganic compositeion-exchanger for gadolinium ion sorption, J. Applied Surface Science, 274, 7 (2013).
24. H. Aghayan, et al, Tungsten substituted molybdophosphoric acid loaded on various types of mesoporous silica SBA-15 for application of thorium ion adsorption, J. Journal of Nuclear Materials (2017), doi: 10.1016/j.jnucmat.2017.09.009.
25. R. Saberi, et al, Adsorption characteristic of 137Cs from aqueous solution using PAN- based sodium titanosilicate composite, J. Radioanalytical and Nuclear Chemistry, 284(2), 461 (2010).
26. R.R. Sheha, Synthesis and characterization of mangnetic hexacyanoferrate (Ц) polymetric nanocomposite for separation of cesium from radioactive waste solution, J. Colloid and Interface Science, 388 (1), 21 (2012).
27. G. Naidu, et al., Rubidium extraction using an organic polymer encapsulated potassium copper hexacyanoferrate sorbent, J. Chemical Engeeniring Journal, 306, 31 (2016).
28. A. Nilchi, et al., Adsorption of cesium on copper hexacyanoferrate- PAN composite ion exchanger from aqueous solution, J. Chemical Engineering Journal, 172 (1), 572 (2011).
29. S. Vashina, et al., Zinc hexacyanoferrate loaded mesoporous MCM-41 as a new adsorbent for cesium: equilibrium, kinetic and thermodynamic studies, J. Desalination and Water Treatment, 55, 1220 (2015).
30. S. Mohammadi, H. Faghihian, Elimination of Cs+ from aquatic systems by an adsorbent prepared by immobilization of potassium copper hexacyanoferrate on the SBA-15 surface: kinetic, thermodynamic, and isotherm studies, J. Environmental Science and Pollution Research, 26, 12055 (2019).
31. C.L. Neskovic, et al, Structure of copper-potassium hexacyanoferrate (II) and sorption mechanisms of cesium, J. Journal of Solid State Chemistry, 177, 1817 (2004).
32. Z.A. Alothman, A Review: Fundamental Aspects of Silicate Mesoporous Materials, J. Materials, 5, 2874 (2012).
33. K.D. Kowanga, et al., Kinetic, sorption isotherms, pseudo-first-order model and pseudo-second-order model studies of Cu(II) and Pb(II) using defatted Moringa oleifera seed powder, J. Journal of Phytopharmacology, 5(2), 71 (2016).
34. U.A. Edet, A.O. Ifelebuegu, Kinetics, Isotherms, and Thermodynamic Modeling of the Adsorption of Phosphates from Model Wastewater Using Recycled Brick Waste, J. Processes, 8, 665 (2020).
35. G. Blanchard, M. Maunaye, G. Martin, Removal of heavy metals from waters by means of natural zeolites, J. Water Research, 18, 1501 (1984).
36. Y.S. Ho, G. Mckey, Pseudo-second order model for sorption processes, J. Process Biochemistry, 34, 451 (1998).
37. J. Wang, X. Guo, Adsorption isotherm models: Classification, physical meaning, application and solving method, J. Chemosphere, 258, 127279 (2020).
38. C. Delchet, et al, Extraction of radioactive cesium using innovative functionalized porous materials, J. RSC Advances, 2, 5707 (2012).
39. H. Zhang, et al, Sorption behavior of cesium from aqueous solution on magnetic hexacyanoferrate materials, J. Nuclear Engineering and Design, 275, 322 (2014).
40. T. Sasaki, Sh.Tanaka, Magnatic separation of cesium ion using Prussian blue modified magnetite, J. Chemistry Letters, 41, 32 (2012).
41. C. Loos-Neskovice, et al, Zinc and nickel ferrocyanides: preparation, Composition and Structure, 31, 1133 (1984).
42. T. Sangvanich, et al, Selective capture of cesium and thallium from natural waters and simulated wastes with copper ferrocyanide functionalized mesoporous silica, J. Journal of Hazardous Materials, 182, 225 (2010).
43. H. Aghayan, et al, Studies on the adsorption behavior of uranium onto a synthesized hybrid material based on the spherical SBA-15 and tin tungstomolybdophosphate, J. Journal of Nuclear Sience and Technology, 40, 72 (2019), (In Persian).