نوع مقاله : مقاله پژوهشی

نویسندگان

گروه فیزیک هسته‌ای، دانشکده علوم پایه، دانشگاه مازندران، صندوق پستی: 416-47415، بابلسر - ایران

10.24200/nst.2022.1444

چکیده

با توجه به اهمیت عدم تقارن ماده هسته‌ای بر روی برهم‌کنش یون‌های سنگین، در این تحقیق سیستم‌های برهم‌کنشی را به سه دسته مختلف ایزوتوپی، ایزوباری و ایزوتونی تقسیم و مشخصات سد همجوشی را برای هر گروه به صورت مجزا با استفاده از 27 نسخه مختلف فرمالیزم مجاورتی مورد بررسی قرار داده‌ایم. بررسی انجام شده نشان می‌دهد، جهت محاسبه و هم‌چنین پیش‌بینی مشخصات سد همجوشی برهم‌کنش یون‌های سنگین مناسب‌تر است به جای استفاده از یک نسخه منفرد، از نسخه‌های مختلف فرمالیزم مجاورتی برحسب درجات آزادی مختلف ایزواسپینی استفاده نمود.

کلیدواژه‌ها

عنوان مقاله [English]

Behavior of potential barrier height in heavy ion fusion reactions

نویسندگان [English]

  • M. Davanlou
  • O.N. Ghodsi
  • S.M. Motevalli

Department of Nuclear Physics, Faculty of Sciences, University of Mazandaran, P.O.Box: 47415-416, Babolsar - Iran

چکیده [English]

Considering the importance of nuclear asymmetry matter in heavy-ion interactions, in the present study, we have divided the interacting systems into three different groups, including isotopic, isobaric, and isotonic systems, and examined the characteristics of the fusion barrier for each group separately using 27 different versions of proximity formalism. Our results show that for calculating and predicting the fusion barrier characteristics in heavy ions interactions, it is more proper to use different versions of proximity formalism, instead of a single performance, based on the isospin degrees of freedom.

کلیدواژه‌ها [English]

  • Fusion barrier
  • Proximity model
  • Isospin symmetry
  • Heavy ions interactions
  • Nucleus asymmetry
1. A.B. Balantekin, N. Takigawa, Review of Modern Physics, 70 (1998) 77; L.C. Vaz, J.M. Alexander, G.R. Satchler, Fusion barriers, empirical and theoretical: Evidence for dynamic deformation in subbarrier fusion, Physics Reports, 69, 373 (1981).
 
2. D.G. Kovar, et al., Systematics of carbon- and oxygen-induced fusion on nuclei with 12≤A≤19, Physical Review C., 20, 1305 (1979).
 
3. E.F. Aguilera, et al., Search for structure in the fusion of 28Si+28,30Si and 30Si+30Si, Physical Review C., 33, 1961 (1986).
 
4. D. Shapira, et al., Fusion and peripheral processes in the collisions of 20Ne + 20Ne and 20Ne + 16O, Physical Review C., 28, 1148 (1983).
 
5. R. Kumari, R.K. Puri, Parametrization of fusion barriers based on empirical data, Nuclear Physics A., 933, 135 (2015).
 
6. N.K. Dhiman, R.K. Puri, A comparative study of isotopic dependence of fusion dynamics for Ca-Ni colliding series, Acta Physica Polonica B., 37, 1855 (2006).
 
7. O.N. Ghodsi, R. Gharaei, The European Physical Journal A 48 (2012) 21; O.N. Ghodsi, R. Gharaei, and F. Lari, Physical Review C 86 (2012) 024615; O.N. Ghodsi and A. Moradi, Physical Review C 89 (2014) 064612; M. Salehi and O.N. Ghodsi, International Journal of Modern Physics E 20, 11 (2011) 2337; O.N. Ghodsi, H.R. Moshfegh and R. Gharaei, Physical Review C., 88 , 034601 (2013).
 
8. V.Y. Denisov, Interaction potential between heavy ions, Physics Letters B., 526, 315 (2002).
 
9. R. Bass, Threshold and angular momentum limit in the complete fusion of heavy ions, Physics Letters B., 47, 139 (1973); Nuclear Physics A., 231, 45 (1974).
 
10. C. Ngo, et al., Properties of heavy ion interaction potentials calculated in the energy density formalism, Nuclear Physics A., 252, 237 (1975).
 
11. J. Blocki, et al, Proximity forces Annals of Physics, 105, 427 (1977).
 
12. I. Dutt, R.K. Puri, Systematic study of the fusion barriers using different proximity-type potentials for N=Z colliding nuclei: New extensions, Physical Review C., 81, 044615 (2010). I. Dutt, R.K. Puri, Systematic study of the fusion barriers using different proximity-type potentials for N=Z colliding nuclei: New extensions, Physical Review C., 81, 047601 (2010); S. Gautam, A.D. Sood, R.K. Puri, J. Aichelin, Sensitivity of the transverse flow to the symmetry energy, Physical Review C., 83, 034606 (2011).
 
13. R.K. Puri, M.K Sharma, R.K. Gupta, Isotopic dependence of fusion cross-sections–linear relationships, The European Physical Journal A-Hadrons and Nuclei., 3, 277 (1998).
 
14. W.D. Myers, W.J. Swiatecki, Nuclear masses and deformations, Nuclear Physics., 81, 1 (1966).
 
15. P. Moller, J.R. Nix, Macroscopic potential-energy surfaces for symmetric fission and heavy-ion reactions, Nuclear Physics A., 272, 502 (1976).
 
16. H.J. Krappe, J.R. Nix, Unified nuclear potential for heavy-ion elastic scattering, fusion, fission, and ground-state masses and deformations, Physical Review C., 20, 992 (1979).
 
17. P. Moller, J.R. Nix, Nuclear mass formula with a Yukawa-plus-exponential macroscopic model and a folded-Yukawa single-particle potential, Nuclear Physics A., 361, 117 (1981).
 
18. G. Royer, B. Remaud, Fission processes through compact and creviced shapes, Journal of Physics G., 10, 1057 (1984).
 
19. P. Moller, J.R. Nix, Nuclear masses from a unified macroscopic-microscopic model, Atomic Data and Nuclear Data Tables, 39, 213 (1988).
 
20. P. Moller, et al, Nuclear ground-state masses and deformations, Atomic Data and Nuclear Data Tables., 59, 185 (1995).
 
21. K. Pomorski, J. Dudek, Nuclear liquid-drop model and surface-curvature effects, Physical Review C., 67, 044316 (2003).
 
22. R. Kumar, M.K. Sharma, Systematic study of various proximity potentials in Pb-daughter cluster radioactivity, Physical Review C., 85, 054612 (2012).
 
23. W.D. Myers, W.J. Swiatecki, Nucleus-nucleus proximity potential and superheavy nuclei, Physical Review C., 62, 044610 (2000).
 
24. I. Dutt, R. Bansal, A modified proximity approach in the fusion of heavy ions, Chinese Physics Letters, 27, 112402 (2010).
 
25. R. Bass, Fusion of heavy nuclei in a classical model, Nuclear Physics A., 231, 45 (1974).
 
26. R. Bass, Nucleus-nucleus potential deduced from experimental fusion cross sections, Physical Review Letters, 39, 265 (1977).
 
27. P.R. Christensen, A. Winther, The evidence of the ion-ion potentials from heavy ion elastic scattering, Physics Letters B., 65, 19 (1976).
 
28. W. Reisdorf, Heavy-ion reactions close to the Coulomb barrier, Journal of Physics G: Nuclear and Particle Physics, 20, 1297 (1994).
 
29. A. Winther, Dissipation, polarization and fluctuation in grazing heavy-ion collisions and the boundary to the chaotic regime, Nuclear Physics A., 594, 203 (1995).
 
30 R.A. Broglia, A. Winther, Heavy-Ion Reactions, (Addison-Wesley, New York, 1991), Parts I and II FIP Lecture Notes Series.
 
31. V.Yu. Denisov, Interaction potential between heavy ions, Physics Letters B., 526, 315 (2002).
 
32. H. Ngo, C. Ngo, Calculation of the real part of the interaction potential between two heavy ions in the sudden approximation, Nuclear Physics A., 348, 140 (1980).
 
33. M. Trotta, et al, Sub-barrier fusion of the magic nuclei 40,48Ca+48Ca, Physical Review C., 65, 011601 (2001).
 
34. H. Timmers, et al, A case study of collectivity, transfer and fusion enhancement, Nuclear Physics A., 633, 421 (1998).
 
35. D.J. Hinde, et al, Isotopic dependence of fusion barrier energies in reactions forming heavy elements, Physical Review C., 75, 054603 (2007).