1. G. Amsel, D. Samuel, The mechanism of anodic oxidation, J. Phys. Chem. Solids., 23, 1707 (1962).
2. G. Amsel, et al., Microanalysis by the direct observation of nuclear reactions using a 2 MeV van de graaff, Nucl. Instr. and Meth., 92, 481 (1971).
3. J.-J. Ganem, et al., Study of thin hafnium oxides deposited by atomic layer deposition, Nucl. Instr. and Meth., B 219–220, 856 (2004).
4. A.F. Gurbich, S.L. Molodtsov, Application of IBA techniques to silicon profiling in protective oxide films on a steel surface, Nucl. Instr. Meth. Phys. Res., B 226, 637(2004).
5. D.D. Cohen, et al., Determination of 18O concentrations in musamples of biological fluids, Nucl. Instr. Meth. Phys. Res., B 50, 43 (1990).
6. S.N. Nwosu, H.J. Fischbeck, Assessment of 18O enriched water as a marker of total body water Nucl, Instr. Meth. Phys. Res., B 40/41, 857 (1989).
7. P. Trocellier, et al., Real capabilities of nuclear microprobe analysis for isotope ratio measurements, Nucl. Instr. Meth. Phys. Res., B 83, 377 (1993).
8. M. Borysiuk, et al., Optimization of 18O measurement using NRA for studies of isotopic content in fossil meteorites, Nucl. Instr. Meth. Phys. Res., B 269, 2229 (2011).
9. Paula Rangel Pestana Allegro, et al., Determination of stable isotope ratios using nuclear reaction analysis coupled with a particle–gamma coincidence method, J. Anal. At. Spectrom, 36, 120 (2021).
10. C.E. Rolfs, W.S. Rodney, Cauldrons in the Cosmos, (University of Chicago Press, USA, 1988).
11. Y. Wang, M. Nastasi (Eds.), Handbook of modern ion beam materials analysis, (Chapter 7), in: J. Räisänen, particle-induced gamma emission: PIGE, Second ed., (2009).
12. W.K. Chu, J.W. Mayer, M.A. Nicolet, Backscattering Spectrometry, Academic Press, New York, (1978).
13. D.D. Cohen, E.K. Rose, Analysis of oxygen by charged particle bombardment, Nucl. Instr. Meth. Phys. Res., B 66, 158 (1992).
14. G. Amsel, D. Samuel, Microanalysis of the stable isotopes of oxygen by means of nuclear reactions, Anal. Chem., 39, 1689 (1967).
15. I.C. Vickridge, et al., The contribution of stable isotopic tracing, narrow nuclear resonance depth profiling, and a simple stochastic theory of charged particle energy loss to studies of the dry thermal oxidation of SiC, Nucl. Instr. Meth. Phys. Res., B 232, 272 (2005).
16. E. Pitthan, et al., Synthesis and applications of 18O standards for nuclear reaction analysis, Nucl. Instr. Meth. Phys. Res., B 332, 56 (2014).
17. C. Lien, L. Wielunski, M. Nicolet, Comparison of the Nuclear Reactions 18O(p, α)15N and 16O(d, α)14N to Study the Oxygen Effects in Pt Silicide Formation, Nucl. Instr. and Meth., 213, 463 (1983).
18. N.S. Christensen, et al., Absolute calibration of the 18O (p, α0)15N nuclear reaction, Nucl. Instr. and Meth., B 51, 97 (1990).
19 I.V. Mitchell, et al., The Determination of Absolute Oxygen Coverage by Nuclear Reaction Analysis, Nucl. Instr. Meth. Phys. Res., B 45, 107 (1990).
20 G. Amsel, Nuclear Reaction Techniques in Materials Analysis, Ann. Rev. Nucl. Part. Sci, 34, 435 (1984).
21. R.B. Firestone, Table of isotopes, Eighth Edition, Version 1.0, (1996).
22. Z. Elekes, et al., Deuteron induced gamma-ray emission method applied at a nuclear microprobe for carbon and oxygen content measurements, Nucl. Instr. Meth., B 168, 305 (2000).
23. Á.Z. Kiss, et al., Thick target yields of deuteron induced gamma-ray emission from light elements, Nucl.Instr. Meth., B 85, 118 (1994).
24. A.E. Pillay, D.K. Bewley, Analysis of the Rare Stable Isotopes of Carbon, Nitrogen and Oxygen using Charged-particle Induced Prompt y-Rays, J. Appl. Radiat. Isotopes, 34, 1571 (1983).
25. D. Gihwala, M. Peisach, Determination of Oxygen by Deuteron-Induced Pipps, J. Radioanal. Nucl. Chem. Lett., 106, 9 (1986).
26. L. Csedreki, R. Huszank, Application of PIGE, BS and NRA techniques to oxygen profiling in steel joints using deuteron beam, Nucl. Instr. Meth. Phys. Res., B 348,165 (2015).
27. I.C. Vikridge, J. Tallon, M. Preland, I60 DIGME of high Tc materials, Nucl. Instr. Meth. Phys. Res., B 99, 450 (1995).
28. I.C. Vikridge, J. Tallon, M. Preland, High precision determination of 160 in high T, superconductors by DIGME, Nucl. Instr. Meth. Phys. Res., B 85, 95 (1994).
29. C. Rolfs, I.J.R. Baumvol, Characterisation of ultrathin dielectric films with ion beams, Z. Phys., A 353, 127 (1995).
30. G.Á. Sziki, et al., Gamma ray production cross-sections of deuteron induced nuclear reactions for light element analysis, Nucl. Instr. Meth. Phys. Res., B 251, 343 (2006).
31. A. Jokar, H. Rafi-kheiri, DIGE differential cross section data for oxygen isotopic analysis, Nucl. Instrum. Methods Phys. Res. Sect., B 482, 11 (2020).
32. G. Amsel, et al., Precision Absolute Thin Film Standard Reference Targets for Nuclear Reaction Microanalysis of Oxygen Istopes, Nucl. Instr. Meth., 149, 705 (1978).
33. H. Rafi-kheiri, O. Kakuee, M. Lamehi-Rachti, Differential cross section measurement of the natO(d,d0) reaction at energies and angles relevant to EBS, Nucl. Instr. Meth. Phys. Res., B 373, 40 (2016).
34.M. Mayer, SIMNRA, a Simulation Program for the Analysis of NRA, RBS and ERDA, in: J.L. Duggan, I.L. Morgan (Eds.), Proceedings of the 15th International Conference on the Application of Accelerators in Research and Industry, American Institute of Physics Conference Proceedings, 475, 541 (1999).
35. A. Jokar, O. Kakuee M. Lamehi-Rachti, Differential cross sections measurement of 28Si(p,p´γ)28Si and 29Si(p,p´γ)29Si reactions for PIGE applications, Nucl. Instrum. Methods Phys. Res. Sect., B 371, 37 (2016).
36. Y. Wang, M. Nastasi (Eds.), Handbook of Modern Ion Beam Materials Analysis, (Chapter 7), in: J. Räisänen, particle-induced gamma emission: PIGE, second ed. Materials Research Society, (2009).