نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشکده‌ی فیزیک و شتابگرها، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی 3486-11365، تهران - ایران

2 پژوهشکده‌ی کاربرد پرتوها، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی 3486-11365، تهران - ایران

10.24200/nst.2022.1454

چکیده

در این کار پژوهشی ما از روش گسیل پرتوی گامای القایی با دوترون (DIGE) بر اساس واکنش­های هسته­ای  و برای اندازه­گیری مطلق ایزوتوپ­های پایدار O16 و O18 در نمونه O218 H پرتودهی­شده استفاده کردیم. این نمونه به عنوان هدف برای تولید رادیوایزوتوپ F18 با باریکه پروتون شتابگر سیکلوترون بمباران­شده بود. هدف نازک 5O2Ta مورد استفاده در این آزمایش با آندایزینگ فلز تانتالوم با آب پرتودهی­شده ساخته شد. مزیت اصلی روش DIGE اندازه­گیری هم­زمان ایزوتوپ‌های O16 و O18 تنها با یک آزمایش با باریکه دوترون است. اعتبار روش با تعیین مقدار ایزوتوپ O18 برای یک نمونه آب با غنای O18 مشخصبررسی شد. اندازه­گیری­ها با استفاده از باریکه دوترون keV 1150 شتابگر الکتروستاتیک MV 3 واندوگراف پژوهشگاه علوم و فنون هسته­ای انجام شد.

کلیدواژه‌ها

عنوان مقاله [English]

Absolute measurement of the isotopes 16O and 18O in bombarded H218O sample using deuteron-induced gamma-ray emission technique

نویسندگان [English]

  • H. Rafi-Kheiri 1
  • A. Jokar 1
  • F. Johari Daha 2
  • G. Aslani 2

1 Physics and Accelerators Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box:11365-3486, Tehran-Iran

2 Radiation Applications Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box:11365-3486, Tehran-Iran

چکیده [English]

In this research work, we used the Deuteron Induced Gamma-ray Emission (DIGE) method based on 18O(d,pγ)19O (Eγ=1376 keV), and 16O(d,pγ)17O (Eγ= 871 keV) nuclear reactions to determine absolute amounts of the stable isotopes 16O  and 18O in the irradiated H218O sample. This sample had been bombarded as a target by the proton beam of a cyclotron accelerator in order to 18F radioisotope production. The employed thin Ta2O5 target was prepared by anodizing tantalum backing with the sample of irradiated H218O. The main advantage of PIGE is in measuring the simultaneity of the isotopes 16O and 18O only using one experience with a deuteron beam. The method's reliability was checked by determining isotope 18O for a sample with given 18O enrichment. These measurements were conducted using the 1150 keV deuteron beam of the 3 MV Van de Graaff electrostatic accelerator of the Nuclear Science and Technology Research Institute (NSTRI).

کلیدواژه‌ها [English]

  • nuclear reaction
  • Particle Induced Gamma-ray Emission
  • isotopes 16O and 18O
1.             G. Amsel, D. Samuel, The mechanism of anodic oxidation, J. Phys. Chem. Solids., 23, 1707 (1962).
 
2. G. Amsel, et al., Microanalysis by the direct observation of nuclear reactions using a 2 MeV van de graaff, Nucl. Instr. and Meth., 92, 481 (1971).
 
3. J.-J. Ganem, et al., Study of thin hafnium oxides deposited by atomic layer deposition, Nucl. Instr. and Meth., B 219–220, 856 (2004).
 
4. A.F. Gurbich, S.L. Molodtsov, Application of IBA techniques to silicon profiling in protective oxide films on a steel surface, Nucl. Instr. Meth. Phys. Res., B 226, 637(2004).
 
5. D.D. Cohen, et al., Determination of  18O concentrations in musamples of biological fluids, Nucl. Instr. Meth. Phys. Res., B 50, 43 (1990).
 
6. S.N. Nwosu, H.J. Fischbeck, Assessment of  18O enriched water as a marker of total body water Nucl, Instr. Meth. Phys. Res., B 40/41, 857 (1989).
 
7. P. Trocellier, et al., Real capabilities of nuclear microprobe analysis for isotope ratio measurements, Nucl. Instr. Meth. Phys. Res., B 83, 377 (1993).
 
8. M. Borysiuk, et al., Optimization of 18O measurement using NRA for studies of isotopic content in fossil meteorites, Nucl. Instr. Meth. Phys. Res., B 269, 2229 (2011).
 
9. Paula Rangel Pestana Allegro, et al., Determination of stable isotope ratios using nuclear reaction analysis coupled with a particle–gamma coincidence method, J. Anal. At. Spectrom, 36, 120 (2021).
 
10. C.E. Rolfs, W.S. Rodney, Cauldrons in the Cosmos, (University of Chicago Press, USA, 1988).
 
11. Y. Wang, M. Nastasi (Eds.), Handbook of modern ion beam materials analysis, (Chapter 7), in: J. Räisänen, particle-induced gamma emission: PIGE, Second ed., (2009).
 
12. W.K. Chu, J.W. Mayer, M.A. Nicolet, Backscattering Spectrometry, Academic Press, New York, (1978).
 
13. D.D. Cohen, E.K. Rose, Analysis of oxygen by charged particle bombardment, Nucl. Instr. Meth. Phys. Res., B 66, 158 (1992).
 
14. G. Amsel, D. Samuel, Microanalysis of the stable isotopes of oxygen by means of nuclear reactions, Anal. Chem., 39, 1689 (1967).
 
15. I.C. Vickridge, et al., The contribution of stable isotopic tracing, narrow nuclear resonance depth profiling, and a simple stochastic theory of charged particle energy loss to studies of the dry thermal oxidation of SiC, Nucl. Instr. Meth. Phys. Res., B 232, 272 (2005). 
 
16. E. Pitthan, et al., Synthesis and applications of 18O standards for nuclear reaction analysis, Nucl. Instr. Meth. Phys. Res., B 332, 56 (2014).
 
17. C. Lien, L. Wielunski, M. Nicolet, Comparison of the Nuclear Reactions 18O(p, α)15N and 16O(d, α)14N to Study the Oxygen Effects in Pt Silicide Formation,  Nucl. Instr. and Meth., 213, 463 (1983).
 
18. N.S. Christensen, et al., Absolute calibration of the 18O (p, α0)15N nuclear reaction, Nucl. Instr. and Meth., B 51, 97 (1990).
 
19 I.V. Mitchell, et al., The Determination of Absolute Oxygen Coverage by Nuclear Reaction Analysis, Nucl. Instr. Meth. Phys. Res., B 45, 107 (1990).
 
20 G. Amsel, Nuclear Reaction Techniques in Materials Analysis, Ann. Rev. Nucl. Part. Sci, 34, 435 (1984).
 
21. R.B. Firestone, Table of isotopes, Eighth Edition, Version 1.0, (1996).
 
22. Z. Elekes, et al., Deuteron induced gamma-ray emission method applied at a nuclear microprobe for carbon and oxygen content measurements, Nucl. Instr. Meth., B 168, 305 (2000).
 
23. Á.Z. Kiss, et al., Thick target yields of deuteron induced gamma-ray emission from light elements, Nucl.Instr. Meth., B 85, 118 (1994).
 
24. A.E. Pillay, D.K. Bewley, Analysis of the Rare Stable Isotopes of Carbon, Nitrogen and Oxygen using Charged-particle Induced Prompt y-Rays, J. Appl. Radiat. Isotopes, 34, 1571 (1983).
 
25. D. Gihwala, M. Peisach, Determination of Oxygen by Deuteron-Induced Pipps, J. Radioanal. Nucl. Chem. Lett., 106, 9 (1986).
 
26. L. Csedreki, R. Huszank, Application of PIGE, BS and NRA techniques to oxygen profiling in steel joints using deuteron beam, Nucl. Instr. Meth. Phys. Res., B 348,165 (2015).
 
27. I.C. Vikridge, J. Tallon, M. Preland, I60 DIGME of high Tc materials, Nucl. Instr. Meth. Phys. Res., B 99, 450 (1995).
 
28. I.C. Vikridge, J. Tallon, M. Preland, High precision determination of 160 in high T, superconductors by DIGME, Nucl. Instr. Meth. Phys. Res., B 85, 95 (1994).
 
29. C. Rolfs, I.J.R. Baumvol, Characterisation of ultrathin dielectric films with ion beams, Z. Phys., A 353, 127 (1995).
 
30. G.Á. Sziki, et al., Gamma ray production cross-sections of deuteron induced nuclear reactions for light element analysis, Nucl. Instr. Meth. Phys. Res., B 251, 343 (2006).
 
31. A. Jokar, H. Rafi-kheiri, DIGE differential cross section data for oxygen isotopic analysis, Nucl. Instrum. Methods Phys. Res. Sect., B 482, 11 (2020).
 
32. G. Amsel, et al., Precision Absolute Thin Film Standard Reference Targets for Nuclear Reaction Microanalysis of Oxygen Istopes, Nucl. Instr. Meth., 149, 705 (1978).
 
33. H. Rafi-kheiri, O. Kakuee, M. Lamehi-Rachti, Differential cross section measurement of the natO(d,d0) reaction at energies and angles relevant to EBS, Nucl. Instr. Meth. Phys. Res., B 373, 40 (2016).
 
34.M. Mayer, SIMNRA, a Simulation Program for the Analysis of NRA, RBS and ERDA, in: J.L. Duggan, I.L. Morgan (Eds.), Proceedings of the 15th International Conference on the Application of Accelerators in Research and Industry, American Institute of Physics Conference Proceedings, 475, 541 (1999).
 
35. A. Jokar, O. Kakuee M. Lamehi-Rachti, Differential cross sections measurement of 28Si(p,p´γ)28Si and 29Si(p,p´γ)29Si reactions for PIGE applications, Nucl. Instrum. Methods Phys. Res. Sect., B 371, 37 (2016).
 
36. Y. Wang, M. Nastasi (Eds.), Handbook of Modern Ion Beam Materials Analysis, (Chapter 7), in: J. Räisänen, particle-induced gamma emission: PIGE, second ed. Materials Research Society, (2009).