نوع مقاله : مقاله پژوهشی

نویسندگان

گروه فیزیک، دانشکده علوم پایه، واحد نراق، دانشگاه آزاد اسلامی، صندوق پستی: 37961-58719، نراق - ایران

چکیده

در این پژوهش مقادیر انرژی تحریکی کل (TXE) پاره‌های شکافت نوترونی برای ایزوتوپ‌های پلوتونیوم با استفاده از دو روش محاسبه شده‌اند. ابتدا نتایج انرژی تحریکی کل پاره‌های شکافت محاسبه شده دو روش برای شکافت Pu339 با هم مقایسه شده‌اند. سپس مقادیر TXE محاسبه شده با روش دوم را بر اساس مقادیر TXE روش اول که از تعریف اصلی نتیجه می‌شوند، بهینه‌سازی نموده‌ایم. با این بهینه‌سازی توزیع جرمی TXE برای ایزوتوپ‌های Pu241 و Pu242 که دارای مقادیر تجربی برای انرژی جنبشی کل پاره‌های شکافت هستند به دست آمده‌اند. هم‌چنین، توزیع جرمی انرژی تحریکی کل پاره‌های شکافت برای شکافت نوترونی بقیه ایزوتوپ‌های پلوتونیوم با هر دو روش پیش‌بینی شده‌اند. مقادیر انرژی تحریکی کل پاره‌های شکافت برای ایزوتوپ‌های پلوتونیوم بین 15 تا MeV 35 می‌باشند که در ناحیه متقارن افزایش چشمگیری دارند.

کلیدواژه‌ها

عنوان مقاله [English]

Calculation of the total excitation energy for neutron fission of plutonium isotopes and investigation of its systematic method

نویسندگان [English]

  • P. Mehdipour Kaldiani
  • M. Jamiati

Department of Physics, Faculty of Basic Sciences, Naragh Branch, Islamic Azad University, P.O. Box: 58719-37961, Naragh - Iran

چکیده [English]

In this study,the values of total excitation energy (TXE) of fission fragments are calculated for neutron fission of Plutonium isotopes using two methods. At first, the calculated TXE values using two methods are compared for neutron fission of plutonium 239. Then, the calculated TXE values using the second method are improved based on the results of the first method. TXE distribution of plutonium 241 and 242, which have the measured fission fragment total kinetic energy, are calculated using two methods and according to the method modification. Also, the TXE distributions for neutron fission of other plutonium isotopes are predicted. The values of total excitation energy of fission fragments for plutonium isotopes are between 15 MeV and 35 MeV. The TXE values have a sudden increase in the symmetric region.

کلیدواژه‌ها [English]

  • The total excitation energy
  • Scission point model
  • Neutron fission
  • The deformation of fission fragments
1. L. Dematte, et al., Fragments' mass and energy characteristics in the spontaneous fission of 236Pu, 238Pu, 240Pu, 242Pu, and 244Pu, Nucl. Phys. A, 617(3), 331-346 (1997).
 
2. D. Regnier, et al., Fission fragment charge and mass distributions in Pu 239 (n, f) in the adiabatic nuclear energy density functional theory, Phys. Rev. C, 93(5), 054611-054625 )2016(.
 
3. V.G. Vorob`yeva, et al, Mass yields and kinetic energy of fragments for fission of plutonium isotopes, Conf. on Neutron Physics, Kiev 1973, 3, 270 (1973).
 
4. H. Thierens, et al., Fragment Mass and Kinetic Energy Distributions for 242Pu(sf), 241Pu(n(th),f), and 242Pu(γ,f), Phys. Rev. C, 29, 498-507 (1984).
 
5. A. Chemey, et al., Total kinetic energy and mass yields from the fast neutron-induced fission of 239P, The European Physical Journal A, 56(11), 1-13 (2020).
 
6. K. Nishio, et al., Measurement of Fragment Mass Dependent Kinetic Energy and Neutron Multiplicity for Thermal Neutron Induced Fission of Plutonium-239, Jour. of Nuclear Science and Technology, 32, 404-414 (1995).
 
7. U. Brosa, S. Grossmann, A. Müller, Nuclear scission, Physics Reports, 197(4), 167–262 (1990).
 
8. M. Jamiaty, Kinetic Energy Distribution for Neutron-induced fission of Thorium Isotopes, Physics of Atomic Nuclei, 83(6), 859-865 (2020).
 
9. M. Jamiati, Calculation of the Total Kinetic Energy Distributions for Neutron Fission of Plutonium Isotopes, Journal of Science Nuclear and Technology, 99(1), 156-164 (2022) (In Persian).
 
10. P. Mehdipour Kaldiani, Kinetic energy distribution for neutron-induced fission of neptunium isotopes, Chinese Phys. C, 45, 024110 (2021).
 
11. M.D. Usang, et al., Correlated transitions in TKE and mass distributions of fission fragments described by 4-D Langevin equation, Scientic Reports, 9(1), 1-9 (2019).
 
12. G.D. Adeev, et al., Multidimensional stochastic approach to the fission dynamics of excited nuclei, Physics of Particles and Nuclei, 36(4), 378-426 (2005).
 
13. M.R. Pahlavani, S.M. Mirfathi, Neutron-induced fission of even- and odd-mass plutonium isotopes within a four-dimensional Langevin framework, Phys. Rev. C, 96, 014606 (2017). https://doi.org/ 10.1103/PhysRevC.96.0146.
 
14. B.D. Wilkins, E.P. Steinberg, R.R. Chasman, Scission-point model of nuclear fission based on deformed-shell effects, Phys. Rev. C, 14, 1832 (1976).
 
15. A. Ruben, H. Marten, D. Seeliger, Energy partition in nuclear fission, Z. Physik A - Hadrons and Nuclei, 338, 67-74 (1991). https://doi.org/10.1007/ BF01279116.
 
16. P. Mehdipour Kaldiani, Kinetic Energy Distribution for Photofission of light Actinides, Phys. Rev. C,  102, 044612 (2020).
 
17. C. Manailescu, et al., Possible reference method of total excitation energy partition between complementary fission fragments, Nucl. Phys. A, 867(1), 12-40 (2011).
 
18. C. Morariu, et al., Modelling of the total excitation energy partition including fragment deformation and excitation energies at scission, J. Phys. G: Nucl. Part. Phys., 39, 055103 (2012).
 
19. J. Terrell, In: Proceedings of Conf. AEA Symposium on Physics and Chemistry of Fission, Prompt neutrons from fission, (IAEA, Salzburg, Austria, 1965), 45(4), 45008514 (1965).
 
20. P. Mehdipour Kaldiani, Systematic Approach to Calculate the Total Kinetic Energy Distribution of Actinides for the Photofission on Phenomenon, Physics of Atomic Nuclei, 84(1), 11-17 (2021).
 
21. V.Yu. Denisov, T.O. Margitych, I.Yu. Sedykh, Mass yields and kinetic energy of fragments from fission of highly-excited nuclei with A≤220, Nucl. Phys. A, 958, 101-128 (2017).
 
22. C. Karthika, M. Balasubramaniam, Scission point model for the mass distribution of ternary fission, Eur. Phys. J. A, 55(4), 59 (2019).
 
23. J. Blocki, et al., A generalization of the Proximity Force Theorem, Annals of Physics, 132(1), 53-65 (1981).
 
24. A. Bohr, B.R. Mottelson, Nuclear structure, Vol. II, (World Scientific, New York: Benjamin 1998).
 
25. H. Umezawa, S. Baba, H. Baba, Systematic behaviour of the most probable charge in the medium-energy fission, Nucl. Phys. A, 160(1), 65-98 (1971).
 
26. N. Sugarman, A. Turkevich, Radiochemical Studies: The Fission Product, edited by C. D. Coryell and N. Sugarman, (McGraw-Hill, New York, 1951), 3, 1396 (1951).
 
27. G. Audi, A.H. Wapstra, C. Thibault, The AME2003 atomic mass evaluation:(II). Tables, graphs and references, Nuclear physics A, 729(1), 337-676 (2003).
 
28. H. Pasca, et al, Extraction of potential energy in charge asymmetry coordinate from experimental fission data, Eur. Phys. J. A, 52(12), 369 (2016).
 
29. A.V. Andreev, et al., Possible explanation of fine structures in mass-energy distribution of fission fragments, Eur. Phys. J. A, 22(1), 51–60 (2004).
 
30. J.F. Lemaître, et al., Fully microscopic scission-point model to predict fission fragment observables, Phys. Rev C, 99(3), 034612 (2019). doi:10.1103/physrevc. 99.034612
 
31. A. Göök, et al., Correlated mass, energy and angular distributions from bremsstrahlung-induced fission of 234U and 232Th in the energy region of the fission barrier, Phys. Rev. C, 96(4), 044301 (2017).
 
32. P. Mehdipour Kaldiani, Deformation Parameters and Collective Temperature Changes in Photofission Mass Yields of Actinides within the Systematic Statistical Scission Point Model, Front. Phys, 9, 629978 (2021). doi: 10.3389/fphy.2021.629978.
 
33. H.W. Schmitt, J.H. Neiler, F.J. Walter, Fragment Energy Correlation Measurements for 252Cf Spontaneous Fission and 235U Thermal-Neutron Fission, Phys. Rev., 141, 1146 (1966).
 
34. M. Jamiati, P. Mehdipour Kaldiani, The calculation of total fragment excitation energy for photofission of Uranium isotopes, Turkish Journal of Physics, 44 (4), 364-372 (2020).
 
35. A. Tudora, et al., Comparing  different  energy  partitions  at  scission  used  in prompt  emission model  codes GEF  and  Point-by-Point, Nuclear Physics A, 940, 242–263 (2015).