1. L. Dematte, et al., Fragments' mass and energy characteristics in the spontaneous fission of 236Pu, 238Pu, 240Pu, 242Pu, and 244Pu, Nucl. Phys. A, 617(3), 331-346 (1997).
2. D. Regnier, et al., Fission fragment charge and mass distributions in Pu 239 (n, f) in the adiabatic nuclear energy density functional theory, Phys. Rev. C, 93(5), 054611-054625 )2016(.
3. V.G. Vorob`yeva, et al, Mass yields and kinetic energy of fragments for fission of plutonium isotopes, Conf. on Neutron Physics, Kiev 1973, 3, 270 (1973).
4. H. Thierens, et al., Fragment Mass and Kinetic Energy Distributions for 242Pu(sf), 241Pu(n(th),f), and 242Pu(γ,f), Phys. Rev. C, 29, 498-507 (1984).
5. A. Chemey, et al., Total kinetic energy and mass yields from the fast neutron-induced fission of 239P, The European Physical Journal A, 56(11), 1-13 (2020).
6. K. Nishio, et al., Measurement of Fragment Mass Dependent Kinetic Energy and Neutron Multiplicity for Thermal Neutron Induced Fission of Plutonium-239, Jour. of Nuclear Science and Technology, 32, 404-414 (1995).
7. U. Brosa, S. Grossmann, A. Müller, Nuclear scission, Physics Reports, 197(4), 167–262 (1990).
8. M. Jamiaty, Kinetic Energy Distribution for Neutron-induced fission of Thorium Isotopes, Physics of Atomic Nuclei, 83(6), 859-865 (2020).
9. M. Jamiati, Calculation of the Total Kinetic Energy Distributions for Neutron Fission of Plutonium Isotopes, Journal of Science Nuclear and Technology, 99(1), 156-164 (2022) (In Persian).
10. P. Mehdipour Kaldiani, Kinetic energy distribution for neutron-induced fission of neptunium isotopes, Chinese Phys. C, 45, 024110 (2021).
11. M.D. Usang, et al., Correlated transitions in TKE and mass distributions of fission fragments described by 4-D Langevin equation, Scientic Reports, 9(1), 1-9 (2019).
12. G.D. Adeev, et al., Multidimensional stochastic approach to the fission dynamics of excited nuclei, Physics of Particles and Nuclei, 36(4), 378-426 (2005).
13. M.R. Pahlavani, S.M. Mirfathi, Neutron-induced fission of even- and odd-mass plutonium isotopes within a four-dimensional Langevin framework, Phys. Rev. C, 96, 014606 (2017). https://doi.org/ 10.1103/PhysRevC.96.0146.
14. B.D. Wilkins, E.P. Steinberg, R.R. Chasman, Scission-point model of nuclear fission based on deformed-shell effects, Phys. Rev. C, 14, 1832 (1976).
15. A. Ruben, H. Marten, D. Seeliger, Energy partition in nuclear fission, Z. Physik A - Hadrons and Nuclei, 338, 67-74 (1991). https://doi.org/10.1007/ BF01279116.
16. P. Mehdipour Kaldiani, Kinetic Energy Distribution for Photofission of light Actinides, Phys. Rev. C, 102, 044612 (2020).
17. C. Manailescu, et al., Possible reference method of total excitation energy partition between complementary fission fragments, Nucl. Phys. A, 867(1), 12-40 (2011).
18. C. Morariu, et al., Modelling of the total excitation energy partition including fragment deformation and excitation energies at scission, J. Phys. G: Nucl. Part. Phys., 39, 055103 (2012).
19. J. Terrell, In: Proceedings of Conf. AEA Symposium on Physics and Chemistry of Fission, Prompt neutrons from fission, (IAEA, Salzburg, Austria, 1965), 45(4), 45008514 (1965).
20. P. Mehdipour Kaldiani, Systematic Approach to Calculate the Total Kinetic Energy Distribution of Actinides for the Photofission on Phenomenon, Physics of Atomic Nuclei, 84(1), 11-17 (2021).
21. V.Yu. Denisov, T.O. Margitych, I.Yu. Sedykh, Mass yields and kinetic energy of fragments from fission of highly-excited nuclei with A≤220, Nucl. Phys. A, 958, 101-128 (2017).
22. C. Karthika, M. Balasubramaniam, Scission point model for the mass distribution of ternary fission, Eur. Phys. J. A, 55(4), 59 (2019).
23. J. Blocki, et al., A generalization of the Proximity Force Theorem, Annals of Physics, 132(1), 53-65 (1981).
24. A. Bohr, B.R. Mottelson, Nuclear structure, Vol. II, (World Scientific, New York: Benjamin 1998).
25. H. Umezawa, S. Baba, H. Baba, Systematic behaviour of the most probable charge in the medium-energy fission, Nucl. Phys. A, 160(1), 65-98 (1971).
26. N. Sugarman, A. Turkevich, Radiochemical Studies: The Fission Product, edited by C. D. Coryell and N. Sugarman, (McGraw-Hill, New York, 1951), 3, 1396 (1951).
27. G. Audi, A.H. Wapstra, C. Thibault, The AME2003 atomic mass evaluation:(II). Tables, graphs and references, Nuclear physics A, 729(1), 337-676 (2003).
28. H. Pasca, et al, Extraction of potential energy in charge asymmetry coordinate from experimental fission data, Eur. Phys. J. A, 52(12), 369 (2016).
29. A.V. Andreev, et al., Possible explanation of fine structures in mass-energy distribution of fission fragments, Eur. Phys. J. A, 22(1), 51–60 (2004).
30. J.F. Lemaître, et al., Fully microscopic scission-point model to predict fission fragment observables, Phys. Rev C, 99(3), 034612 (2019). doi:10.1103/physrevc. 99.034612
31. A. Göök, et al., Correlated mass, energy and angular distributions from bremsstrahlung-induced fission of 234U and 232Th in the energy region of the fission barrier, Phys. Rev. C, 96(4), 044301 (2017).
32. P. Mehdipour Kaldiani, Deformation Parameters and Collective Temperature Changes in Photofission Mass Yields of Actinides within the Systematic Statistical Scission Point Model, Front. Phys, 9, 629978 (2021). doi: 10.3389/fphy.2021.629978.
33. H.W. Schmitt, J.H. Neiler, F.J. Walter, Fragment Energy Correlation Measurements for 252Cf Spontaneous Fission and 235U Thermal-Neutron Fission, Phys. Rev., 141, 1146 (1966).
34. M. Jamiati, P. Mehdipour Kaldiani, The calculation of total fragment excitation energy for photofission of Uranium isotopes, Turkish Journal of Physics, 44 (4), 364-372 (2020).
35. A. Tudora, et al., Comparing different energy partitions at scission used in prompt emission model codes GEF and Point-by-Point, Nuclear Physics A, 940, 242–263 (2015).