نوع مقاله : مقاله فنی

نویسندگان

1 پژوهشکده پلاسما و گداخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی، صندوق پستی: 51113-14399، تهران- ایران

2 پژوهشکده فوتونیک و فن‌آوری‌های کوانتومی، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی، صندوق پستی: 836-14395، تهران - ایران

3 گروه فیزیک، دانشکده علوم پایه، دانشگاه شاهد، صندوق پستی، 159-18155، تهران ـ ایران

10.24200/nst.2022.1458

چکیده

در این پژوهش رفتار باریکه استوکس بازگشتی از آینه مزدوج فازی ناشی از پراکندگی القایی بریلوئن (SBS-PCM) در استون خالص، به‌طور تجربی بررسی شده است. میزان تغییرات انرژی بازتابی از آینه مزدوج فاز و پهنای زمانی تپ استوکس در اثر ایجاد تغییرات در شار انرژی ورودی به سلول و تغییر طول برهم‌کنش برای ساختار تک سلولی، مورد مطالعه قرار گرفت. بدین جهت با تغییر طول سلول و تغییر ساختار هندسی آینه مزدوج فاز جهت رسیدن به بهینه چیدمان اپتیکی برای بیشینه بازدهی و کمینه پهنای زمانی پرداخته شده است. تغییرات انرژی و پهنای زمانی بازتابی از آینه مزدوج فاز برای حالت‌های درنظر گرفته شده با یک‌دیگر مقایسه شد. نتایج نشان می‌دهد با تغییر در هندسه برهم‌کنش انرژی بازتابی از آینه مزدوج فاز قابل بهینه‌سازی است. با افزایش شدت باریکه ورودی در انرژی ثابت، و تغییر در طول اندرکنش، می‌توان به کمینه پهنای تپ بازتابی برحسب انرژی ورودی دست یافت.

کلیدواژه‌ها

عنوان مقاله [English]

Influence of cell length and input intensity changes on the Stimulated Brillouin Scattering in the single-cell setup

نویسندگان [English]

  • M. Jaberi 1
  • S. Panahi bakhsh 2
  • P. Jamshidi 3
  • A. Nazari Golshan 3

1 Plasma and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, AEOI, P.O. Box: 14399-51113, Tehran, Iran

2 Photonics and Quantum Technologies Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 14395-836, Tehran - Iran

3 Department of Physics, Faculty of Basic Sciences, Shahed University, P.O.Box:18155-159, Tehran-Iran

چکیده [English]

This paper investigated the temporal behavior of the backward Stokes pulse from a stimulated Brillouin scattering phase conjugate mirror (SBS_PCM) in a pure acetone medium. Changes in the reflected energy of the phase-conjugate mirror and the temporal width of the Stokes pulse due to changes in the input energy flux to the cell and changes in the interaction length were studied for the single-cell structure. For this purpose, to achieve the optimal optical arrangement for maximum efficiency and minimum pulse width in full width half maximum, the cell length and the geometric structure of the phase conjugate mirror have been changed. Variations of the energy and the reflected Stokes pulse width of the phase conjugate mirror were compared for the considered cases. The results show that the reflected energy of the phase conjugate mirror can be optimized by changing the interaction geometry. By increasing the intensity of the input beam at constant energy and changing the interaction length, the minimum reflected pulse width was achieved in terms of input energy.

کلیدواژه‌ها [English]

  • Stimulated brillouin scattering
  • Stokes pulse
  • Phase-conjugate mirror
1. M. Bertolotti, High-order harmonic generation in laser plasma plumes, by Rashid Ganeev: Scope: Review. Level: Early career researcher, researcher, teacher, specialist, Ed: Taylor & Francis, (2015).
 
2. T. Popmintchev, et al., Bright coherent ultrahigh harmonics in the keV x-ray regime from mid-infrared femtosecond lasers, Science, 336, 1287-1291 (2012).
 
3. X. Xu, C. Feng, J.-C. Diels, Optimizing sub-ns pulse compression for high energy application, Optics Express, 22, 13904-13915 (2014).
 
4.             A.Y. Okulov, Coherent chirped pulse laser network with Mickelson phase conjugator, Applied Optics, 53, 2302-2311 (2014).
 
5. E. Garmire, Stimulated Brillouin review: invented 50 years ago and applied today, International Journal of Optics, 2018 (2018).
 
6. V.I. Kovalev, R.G. Harrison, On the material response in stimulated Brillouin scattering, Physics Letters A, 375, 2581-2584 (2011).
 
7. A. Brignon, J.-P. Huignard, Phase conjugate laser optics, 9, Wiley. Com, (2004).
 
8.             T. Hatae, et al, Applications of phase conjugate mirror to Thomson scattering diagnostics, Review of Scientific Instruments, 77, 10E508 (2006).
 
9. T. Omatsu, et al., The current trends in SBS and phase conjugation, Laser and Particle Beams, 30, 117-174 (2012).
 
10.          H. Kong, et al, Beam combined laser fusion driver using stimulated Brillouin scattering phase conjugation mirrors, (2008).
 
11.          M. Ostermeyer, et al., Trends in stimulated Brillouin scattering and optical phase conjugation, Laser and Particle Beams, 26 (2008).
 
12.          T. Omatsu, et al., The Current Trends in SBS and phase conjugation, Laser and Particle Beams, 30, 117-174 (2012).
 
13.          S. Schiemann, W. Ubachs, W. Hogervorst, Efficient temporal compression of coherent nanosecond pulses in a compact SBS generator-amplifier setup, Quantum Electronics, IEEE Journal of, 33, 358-366 (1997).
 
14.          Y. Zhu, et al, Threshold reduction of stimulated Brillouin scattering by Stokes seeds via acousto-optic effect, Optics Communications, 281, 4523-4525 (2008).
 
15.          J.-w. Shi, et al, Theoretical investigation on the threshold value of stimulated Brillouin scattering in terms of laser intensity, Applied Physics B, 95, 657-660 (2009).
 
16.          B. Steinhausser, et al, High Energy, Single-Mode, Narrow-Linewidth Fiber Laser Source with Stimulated Brillouin Scattering Multimode to Single Mode Beam Converter, Fiber and Integrated Optics, 27, 407-421 (2008).
 
17.          C. Feng, X. Xu, J.-C. Diels, High-energy sub-phonon lifetime pulse compression by stimulated Brillouin scattering in liquids, Optics Express, 25, 12421-12434 (2017).
 
18. C. Feng, X. Xu, J.-C.M. Diels, Generation of 300 ps laser pulse with 1.2 J energy at 532 nm by stimulated Brillouin scattering in water, In CLEO: Science and Innovations, SM2F. 7 (2014).
 
19.          W. Hasi, et al., Characteristics of SBS hundreds picosecond pulse compression and influence of energy on pulse stability in FC-770, Optics Communications, 311, 375-379 (2013).
 
20.          H. Yuan, et al., Fluctuation initiation of Stokes signal and its effect on stimulated Brillouin scattering pulse compression, Optics Express, 25, 14378-14388 (2017).
 
21.          M. Damzen, M. Hutchinson, High-efficiency laser-pulse compression by stimulated Brillouin scattering, Optics Letters, 8, 313-315 (1983).
 
22.          M. Jaberi, A. Farahbod, H.R. Soleimani, Spectral behavior of amplified back-scattered Stokes pulse in two-cell phase conjugating mirror, Optics Communications, 335, 7-15 (2015).
 
23. M. Jaberi, A.H. Farahbod, H. Rahimpur Soleimani, Spectral behavior of phase conjugated mirror in a two-pass optical amplifier, Iranian Journal of Physics Research, 15, 71-79 (2015).
 
24.          M. Jaberi, et al, Investigation of Energy Flux effect on the reflected pulse width from phase conjugate mirror based on stimulated Brillouin scattering, Iran Physics Conference 1398 (2019).
 
25.          G. Kachen, W. Lowdermilk, Relaxation oscillations in stimulated Raman scattering, Physical Review A,  16, 1657 (1977).
 
26.          V.I. Bespalov, G.A. Pasmanik, Nonlinear optics and adaptive laser systems, Moscow Izdatel Nauka, (1986).
 
27.          M. Jaberi, A. Farahbod, H. Rahimpur Soleimani, Longitudinal mode structure in a non-planar ring resonator, Iranian Journal of Physics Research, 13, 35-44 (2013).