نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده فیزیک، دانشگاه پیام نور، صندوق پستی: 1953633511، تهران- ایران

2 پژوهشکده رآکتور و ایمنی هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 8486-11365، تهران- ایران

چکیده

در پژوهش حاضر ویژگی‌های ساختاری، مکانیکی و هسته‌ای دو نوع کامپوزیت زمینه پلیمری و زمینه فلزی حاوی ذرات کاربید بور مورد بررسی تجربی قرار گرفت. بر اساس آزمون عبور نوترون، میزان عبور نوترون کم‌­تری در پلیمر BPAER تقویت‌شده با نانوذرات C4B در مقایسه با کامپوزیت تقویت‌شده با میکروذرات به‌دست آمد. نمودارهای تنش- کرنش به‌دست آمده از آزمون کشش، بهبود ویژگی‌های مکانیکی کامپوزیت رزین اپوکسی تقویت‌شده با نانوذرات C4B در مقایسه با میکروذرات را نشان می‌دهد. هم­‌چنین آزمون عبور تابش نوترون، بهبود مشخصه‌ی هسته‌ای نانوکامپوزیت C4B-Al را در مقایسه با میکروکامپوزیت C4B-Al نشان می‌دهد. از سوی دیگر مشاهده شد چگالی این نانوکامپوزیت مقدار بیش­‌تری نسبت به میکروکامپوزیت داشته و صرف‌نظر از اندازه و مقدار افزودن ذرات کاربید، چگالی تمام نمونه‌های کامپوزیتی کم­‌تر از آلومینیم است. با افزایش درصد فاز تقویت‌کننده سختی کامپوزیت نیز افزایش یافته است که این افزایش در نمونه‌های نانوکامپوزیت بسیار بیش­‌تر از نمونه‌های میکرو بوده است.

کلیدواژه‌ها

عنوان مقاله [English]

Experimental study of structural, mechanical, and nuclear properties of neutron absorber composites containing boron

نویسندگان [English]

  • M.J. Nasr Isfani 1
  • M. Asadi Asadabad 2
  • F. Payami 2

1 Department of Physics, Payame Noor University, P.O.BOX: 1953633511, Tehran - Iran

2 Reactor and Nuclear Safety Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 11365-8486, Tehran - Iran

چکیده [English]

The present study investigated the structural, mechanical, and nuclear properties of two types of polymeric and metallic composites containing boron carbide particles. The neutron transmission test obtained lower neutron transmission in BPAER reinforced with B4C nanoparticles compared to the microparticle-reinforced composite. The stress-strain diagrams obtained from the tensile test show the improvement of the mechanical properties of the epoxy resin composite reinforced with B4C nanoparticles compared to the microparticles. The neutron transmission test also indicates an improvement in the nuclear properties of the Al-B4C nanocomposite compared to the Al-B4C micro composite. On the other hand, the density of this nanocomposite shows an increase compared to the micro composite. Also, regardless of the size and amount of carbide particles added, the density of all composite samples was lower than that of aluminum. Also, the hardness of the composite increased with increasing the amount of reinforcing phase, which was more in the nanocomposite samples than in the micro composite samples.

کلیدواژه‌ها [English]

  • Composite
  • Boron carbide
  • Neutron transmission
  • Nanoparticles
  1. R. Zboray, et al., Development of a fast neutron imaging system for investigating two-phase flows in nuclear thermal–hydraulic phenomena: A status report, Nucl. Eng. Des., 273, 10 (2014).

 

  1. Y. Huang, et al., A Sandwich type of neutron shielding composite filled with boron carbide reinforced by carbon fiber, Chem. Eng. J., 220, 143 (2013).

 

  1. I. Topcu, et al., Processing and mechanical properties of B4C reinforced Al matrix composites, J. Alloys Compd., 482, 516 (2009).

 

  1. A. Canakci, F. Arslan, Abrasive wear behaviour of B4C particle reinforced Al2024 MMCs, Int. J. Adv. Manuf. Technol., 63 (5-8), 785 (2012).

 

  1. S.K. Tiwari, et al., Characterization of Mechanical Properties of Al-B4C Composite Fabricated by Stir Casting, Int. J. Appl. Eng. Res., 14, 139 (2019).

 

  1. A. Sathishkumar, et al., Investigation of mechanical properties on Al 6061-B4C composite by squeeze casting process technique, Int. Res. J. Multidiscip. Techno, 1(1), 38 (2019).

 

  1. G. Manohar, K.M. Pandey, S.R. Maity, Effect of Sintering Mechanisms on Mechanical Properties of AA7075/B4C Composite Fabricated by Powder Metallurgy Techniques, Ceram. Int., 47, 15147 (2021).

 

  1. W.S. Rubink, et al., Spark plasma sintering of B4C and B4C-TiB2 composites: Deformation and failure mechanisms under quasistatic and dynamic loading, J. Eur. Ceram. Soc., 41, 3321 (2021).

 

  1. M. Dutto, et al., The effect of microwave heating on the microstructure and the mechanical properties of reaction bonded boron carbide, Int. J. Appl. Ceram. Technol., 17, 751 (2020).

 

  1. R. Casati, M. Vedani, Metal Matrix Composites Reinforced by NanoParticles—A Review, Metals, 4, 65 (2014).

 

  1. T. Özdemir, et al., Neutron shielding of EPDM rubber with boric acid: Mechanical, thermal properties and neutron absorption tests, Prog. Nucl. Energy, 89, 102 (2016).

 

  1. J. Kim, J. Jun, M. Lee, Particle Size-Dependent Pulverization of B4C and Generation of B4C/STS Nanoparticles Used for Neutron absorbing Composites, Nucl. Eng. Technol., 46(5), 675 (2014).

 

  1. A.M. Sukegawa, et al., Flexible heat resistant neutron shielding resin, J. Nucl. Mater., 417, 850 (2011).

 

  1. K. Okuno, Neutron shielding material based on colemanite and epoxy resin, Radiat. Prot. Dosim., 115, 258 (2005).

 

  1. J.J. Park, et al., Enhancement in the microstructure and neutron shielding efficiency of sandwich type of 6061Al-B4C composite material via hot isostatic pressing, Nucl. Eng. Des., 282, 1 (2015).

 

  1. J. Kim, et al., Enhancement of thermal neutron attenuation of nano-B4C, -BN dispersed neutron shielding polymer nanocomposites, J. Nucl. Mater., 453, 48 (2014).

 

  1. P. Zhang, et al., The design, fabrication and properties of B4C/Al neutron absorbers, J. Nucl. Mater., 437, 350 (2013).

 

  1. R. Adeli, S.P. Shirmardi, S.J. Ahmadi, Neutron irradiation tests on B4C/epoxy composite for neutron shielding application and the parameter sassay, Radiat. Phys. Chem., 127, 140 (2016).

 

  1. Z. Soltani, et al., Effect of particle size and percentages of Boron carbide on the thermal neutron radiation shielding properties of HDPE/B4C composite: Experimental and simulation studies, Radiat. Phys. Chem., 127, 182 (2016).

 

  1. Y. Huang, et al., A Sandwich type of neutron shielding composite filled with boron carbide reinforced by carbon fiber, Chem. Eng. J., 220, 143 (2013).

 

  1. B. Ellis, In Chemistry and Technology of Epoxy Resins, 1st ed. (Blackie Academic & Professional, Glasgow, 1993).

 

  1. J.W. Krumpfer, et al., Make it nano-Keep it nano, Nanotoday, 8(4), 417 (2013).

 

  1. S.D. Kaloshkin, et al., Radiation-protective polymer-matrix nanostructured composites, J. Alloys Compd. 536S, S522 (2012).

 

  1. J. Jun, et al., Enhancement of dispersion and adhesion of B4C particles in epoxy resin using direct ultrasonic excitation, J. Nucl. Mater., 416, 293 (2011).

 

  1. K. Wang, et al., Mechanical properties and toughening mechanisms of polypropylene/barium sulfate composites, Composites, Part A, 34, 1199 (2003).

 

  1. Sh. Fu, et al., Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites, Composites, Part B, 39, 933 (2008).

 

  1. Y. Nakamura, et al., Effects of Particle Size on Mechanical and Impact Properties of Epoxy Resin Filled with Spherical Silica, J. Appl. Polym. Sci., 45, 1281 (1992).

 

  1. P. Zhang, et al., The design, fabrication and properties of B4C/Al neutron absorbers, J. Nucl. Mater., 437, 350 (2013).

 

  1. Z.G. Xu, et al., The design of a novel neutron shielding B4C/Al composite containing Gd, Mater. Des., 111, 375 (2016).

 

  1. E. Ghasali, et al., Investigation on microstructural and mechanical properties of B4C-aluminum matrix composites prepared by microwave sintering, J. Mater. Res. Technol., 4(4), 411 (2015).

 

  1. R.M. Mohanty, K. Balasubramanian, S.K. Seshadri, Boron carbide- reinforced aluminum 1100 matrix composites: Fabrication and properties, Mater. Sci. Eng., A, 498, 42 (2008).

 

  1. Y.K. Çelik, K. Seçilmiş, Investigation of wear behaviours of Al matrix composites reinforced with different B4C rate produced by powder metallurgy method, Adv. Powder Technol., 28(9), 2218 (2017).

 

  1. S. Singh, R. Singh, Effect of process parameters on microhardness of Al–Al2O3 composite prepared using an alternative reinforced pattern infused deposition modelling assisted investment casting, Rob. Comput. Integr. Manuf., 37, 162 (2016).

 

  1. M. Montoya-Dávila, M.A. Pech-Canul, Pech-Canul, Effect of bi- and trimodal size distribution on the superficial hardness of Al/SiCp composites prepared by pressureless infiltration, Powder Technol., 176, 2 (2007).

 

  1. N.J. Petch, The cleavage strength of polycrystals, J. Iron. Steel Res. Int., 174, 25 (1953).