نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده‌ مهندسی شیمی، دانشگاه تهران، صندوق پستی: 4563-11155 ،تهران ـ ایران

2 پژوهشکده چرخه سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 8486-11365، تهران- ایران

چکیده

در این کار پژوهشی توانایی درشت جلبک قهوه­‌ای سیستوسریا ایندیکا از خانواده فائوفیتا و آمایش شده با کلسیم برای جذب توریم (IV)، وانادیم (V) و آهن (III) از پساب واقعی فرایند ترسیب شیمیایی توریم در یک ستون­ بستر ثابت با ارتفاع cm ۲۵/5 و قطر cm ۵/1 مورد بررسی قرار گرفت. نتایج تجربی نشان داد که در جذب توریم (IV) از محلول خوراک‌­های دوجزیی توریم- وانادیم و توریم - آهن، رقابت بین یون‌­های توریم (IV) و وانادیم (V) قابل‌توجه‌­تر از رقابت بین یون‌­های توریم (IV) و آهن (III) است. هم‌­چنین در جذب توریم، وانادیم، آهن به‌­طور هم‌زمان از پساب واقعی ظرفیت جذب زیستی توریم (IV)، وانادیم (V) و آهن (III) به ترتیب برابر با ۶۰/۱۰۴، ۱۵/۲۴ و mg/g ۳۹/۱۷ به دست آمد که نشان می‌دهد میل ترکیبی یون‌­های توریم (IV) به جلبک سیستوسریا ایندیکای آمایش شده با کلسیم بیش‌­تر از یون‌­های آهن (III) و وانادیم (V) است. نمودارهای شکست جذب با استفاده از مدل‌­های بوهارت - آدامز، توماس، یون - نلسون، بلتر، دز - رسپانس اصلاح شده، گمپرتز و گمپرتز اصلاح شده مدل‌سازی شد. نتایج نشان داد که مدل گمپرتز اصلاح شده تطابق بهتری با داده­‌های تجربی دارد. هم‌­چنین، آزمایش تبدیل فوریه فروسرخ (FTIR) و اندازه‌گیری غلظت کلسیم در پساب واقعی نشان داد که گروه‌­های عاملی هیدروکسیل، آمین، آمید، متیلن، کربوکسیل و سولفات بیش‌­ترین سهم را در سازوکار تبادل یونی با یون‌­های توریم (IV)، وانادیم (V) و آهن (III) دارند.

کلیدواژه‌ها

عنوان مقاله [English]

Th(ІV), V(V), and Fe(ІІІ) biosorption from real wastewater of thorium chemical precipitation process by Ca-pretreated Cystoseria indica alga: breakthrough curves modeling in a fixed bed column and biosorption mechanism study

نویسندگان [English]

  • M. Amiri 1
  • A.R. Keshtkar 2
  • M.A. Moosavian 1

1 Department of Chemical Engineering, University of Tehran, P.O.Box: 11155-4563, Tehran - Iran

2 Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 11365-3486, Tehran - Iran

چکیده [English]

This research examined how Cystoseria indica brown macroalgae of the Phaophyta family can be pre-treated with calcium to sorb Th(IV), V(V), and Fe(III) from real wastewater resulting from the thorium chemical process using a fixed bed column whose bed height was 5.25 cm and diameter was 1.5 cm. It was found that the competition between Th(IV) and V(V) ions is significant in Th(IV) biosorption from three-component feed solutions of Th(IV) - V(V) and Th(IV) - Fe(III). The biosorption capacity of Th(IV), V(V), and Fe(III) from real wastewater was also 104.60, 24.15, and 17.39 mg/g, respectively. It shows that Th(V) ions have higher affinity to Ca-pretreated Cystoseria indica algae than Fe() and V(V) ions. The biosorption breakthrough curves were modeled using Bohart-Adams, Thomas, Yoon-Nelson, Belter, adapted dose-response, Gompertz, and modified Gompertz models. The results showed that the modified Gompertz model better agreed with the experimental data. The Fourier transform infrared (FTIR) analysis and calcium concentration determination in real wastewater indicated that functional groups such as hydroxyl, amine, amide, methylene, carboxyl, and sulfate were most likely to participate in the ion exchange mechanism with Th(*V), V (V) and Fe(III) ions.

کلیدواژه‌ها [English]

  • Multi-component biosorption
  • Brown alga
  • Fixed-bed column
  • Breakthrough curve
  • Empirical model
  1. Broujeni B.R, Nilchi A, Azadi F. Adsorption modeling and optimization of thorium (IV) ion from aqueous solution using chitosan/TiO2 nanocomposite: Application of artificial neural network and genetic algorithm. Environmental Nanotechnology. Monitoring & Management. 2021;15:100400.

 

  1. Riazi M, Keshtkar A.R, Moosavian M.A. Biosorption of Th (IV) in a fixed-bed column by Ca-pretreated Cystoseira indica. Journal of Environmental Chemical Engineering. 2016;4(2):1890-1898.

 

  1. Muñoz A.J, Espínola F, Ruiz E. Removal of Pb (II) in a packed-bed column by a Klebsiella sp. 3S1 biofilm supported on porous ceramic Raschig rings. Journal of industrial and engineering chemistry. 2016;40:118-127.

 

  1. Sulaymon A.H, Yousif S.A, Al-Faize M.M. Single-multicomponent biosorption of lead mercury chromium and arsenic onto activated sludge in batch and fixed-bed adsorber. Desalination and Water Treatment. 2015:53(13):3499-3512.

 

  1. Riazi M, Keshtkar A.R, Moosavian M.A. Batch and continuous fixed-bed column biosorption of thorium (IV) from aqueous solutions: equilibrium and dynamic modeling. Journal of Radioanalytical and Nuclear Chemistry. 2014;301(2):493-503.

 

  1. Vera M, Juela D.M, Cruzat C, Vanegas E. Modeling and computational fluid dynamic simulation of acetaminophen adsorption using sugarcane bagasse. Journal of Environmental Chemical Engineering. 2021;9(2):105056.

 

  1. Barquilha C.E, Cossich E.S, Tavares C.R, Da Silva E.A. Biosorption of nickel and copper ions from synthetic solution and electroplating effluent using fixed bed column of immobilized brown algae. Journal of Water Process Engineering. 2019;32:100904.

 

  1. Amiri M, Keshtkar A.R, Moosavian M.A. Th (ІV) biosorption from a three-component feed solution by Ca-pretreated Cystoseria indica alga in a fixed-bed column: Experimental tests and modeling. Journal of Environmental Chemical Engineering. 2022;10(6):108579.

 

  1. Hu Q, Xie Y, Feng C, Zhang Z. Prediction of breakthrough behaviors using logistic, hyperbolic tangent and double exponential models in the fixed-bed column. Separation and Purification Technology. 2019;212:572-579.

 

  1. Keshtkar A.R, Hassani M.A. Biosorption of thorium from aqueous solution by Ca-pretreated brown algae Cystoseira indica. Korean Journal of Chemical Engineering. 2014;2(31):289-295.

 

  1. Anastopoulos I, Kyzas G.Z. Progress in batch biosorption of heavy metals onto algae. Journal of Molecular Liquids. 2015;209:77-86.

 

  1. He J, Chen J.P. A comprehensive review on biosorption of heavy metals by algal biomass: materials, performances, chemistry, and modeling simulation tools. Bioresource Ttechnology. 2014:160:67-78.

 

  1. Hassan Khani M, Keshtkar A.R, Meysami B,

Firouz Zarea M, Jalali R. Biosorption of uranium from aqueous solutions by nonliving biomass of marinealgae Cystoseira indica. Electronic Journal of Biotechnology. 2006;9(2): 0-0.

 

  1. Ghasemi M, Keshtkar A, Dabbagh R, Safdari S.J. Biosorption of uranium in a continuous flow packed bed column using Cystoseira indica biomass. Journal of Environmental Health Science & Engineering. 2011;8(1):65-74.

 

  1. Akbari M, Hallajisani A, Keshtkar A.R, Shahbeig H, Ghorbanian S.A. Equilibrium and kinetic study and modeling of Cu (II) and Co (II) synergistic biosorption from Cu (II)-Co (II) single and binary mixtures on brown algae C. indica. Journal of Environmental Chemical Engineering. 2015;3(1):140-149.

 

  1. Ghasemi M, Keshtkar A.R, Dabbagh R, Safdari S.J. Biosorption of uranium (VI) from aqueous solutions by Ca-pretreated Cystoseira indica alga: breakthrough curves studies and modeling. Journal of Hazardous Materials. 2011;189(1-2):141-149.

 

  1. Al-Ghouti M.A, Da'ana D.A. Guidelines for the use and interpretation of adsorption isotherm models: A review. Journal of Hazardous Materials. 2020;393:122383.

 

  1. Prabhu A.A, Chityala S, Jayachandran D, Deshavath N.N, Veeranki V.D. A two step optimization approach for maximizing biosorption of hexavalent chromium ions (Cr (VI)) using alginate immobilized Sargassum sp in a packed bed column. Separation Science and Technology. 2021;56(1):90-106.

 

  1. Hu Q, Zhang Z. Comment on ″Exponential and logistic functions: The two faces of the Bohart–Adams model″. Journal of Hazardous Materials. 2020;394:122508.

 

  1. Nithya K, Sathish A, Kumar P.S. Packed bed column optimization and modeling studies for removal of chromium ions using chemically modified Lantana camara adsorbent. Journal of Water Process Engineering. 2020;33:101069.

 

  1. Chu K.H. Fitting the Gompertz equation to asymmetric breakthrough curves. Journal of Environmental Chemical Engineering. 2020;8(3):103713.

 

  1. Pennesi C, Totti C, Beolchini F. Removal of vanadium(III) and molybdenum(V) from wastewater using Posidonia oceanica (Tracheophyta) biomass. PLoS One. 2013;8(10): e76870.

 

  1. Fertu D.I, Bulgariu L, Gavrilescu M. Modeling and Optimization of Heavy Metals Biosorption by Low-Cost Sorbents Using Response Surface Methodology. Processes. 2022;10(3):523.

 

  1. Crisostomo C, Lima F, Dias R, Cardoso V, De Resende M. Joint assessment of bioreduction of chromium (VI) and of removals of both total chromium and total organic carbon (TOC) in sequential hybrid bioreactors. Water, Air, & Soil Pollution. 2016;227(2):1-14.

 

  1. Kamarudzaman A.N, Chay T.C, Amir A, Talib S.A, Aziz R.A, Jalil M.F.A. Competitive biosorption study of Fe (II) and Mn (II) from aqueous solution by Pleurotus spent mushroom compost in a fixed-bed column. In AIP Conference Proceedings. 2019. AIP Publishing LLC.

 

  1. Chatterjee A, Schiewer S. Effect of competing cations (Pb, Cd, Zn, and Ca) in fixed-bed column biosorption and desorption from citrus peels. Water, Air, & Soil Pollution. 2014;225(2):1-13.

 

  1. Yakout S.M, Hassan M.R, Omar H.A. Fixed-bed column study for the removal of hexavalent chromium ions from aqueous solutions via pyrolysis of the rice husk. Desalin. Water Treat. 2019;170:128-137.

 

  1. Mazur L.P, Cechinel M.A, De Souza S.M.G.U, Boaventura R.A, Vilar V.J. Brown marine macroalgae as natural cation exchangers for toxic metal removal from industrial wastewaters: A review. Journal of Environmental Management. 2018;223:215-253.

 

  1. Juela D, Vera M, Cruzat C, Alvarez X, Vanegas E. Mathematical modeling and numerical simulation of sulfamethoxazole adsorption onto sugarcane bagasse in a fixed-bed column. Chemosphere. 2021;280:130687.

 

  1. Oliveira R.C, Hammer P, Guibal E, Taulemesse J.-M., Garcia Jr O. Characterization of metal–biomass interactions in the lanthanum (III) biosorption on Sargassum sp. using SEM/EDX, FTIR, and XPS: preliminary studies. Chemical Engineering Journal. 2014;239:381-391.

 

  1. Jayakumar V, Govindaradjane S, Rajamohan N, Rajasimman M. Biosorption potential of brown algae, Sargassum polycystum, for the removal of toxic metals, cadmium and zinc. Environmental Science and Pollution Research. 2022;29(28):41909-41922.

 

  1. Keshtkar A.R, Kafshgari F. Application of Ca-Pretreated Brown Alga for Heavy Metals Removal from Esfahan Uranium Conversion Facility (UCF) Wastewater, Journal of Nuclear Science and Technology, 2014;67(1);22-30 [In Persian].