نوع مقاله : مقاله پژوهشی
نویسندگان
پژوهشکده چرخه سوخت هستهای، پژوهشگاه علوم و فنون هستهای، سازمان انرژی اتمی ایران، صندوق پستی: 8486-11365، تهران- ایران
چکیده
محصول فرایند خالصسازی مولیبدن-99 حاصل از انحلال اسیدی محصولات حاصل از شکافت اورانیوم-235، اغلب از درجه خلوص 95%-90% برخوردار است که ناخالصیهای اکتیو و غیراکتیو موجود در آن سبب تخریب و کاهش راندمان در ژنراتورهای 99Mo/99mTc میشوند. استفاده از روش تصعید غیرمستقیم به عنوان یک مرحله اضافه برای افزایش خلوص و کاهش اتلاف مولیبدن به جای تصعید مستقیم میتواند تا حدی مؤثر باشد. در این روش مولیبدن محصول با عبور از ستون حاوی آلومینا جذب آن شده و پس از خشک شدن جاذب، تصعید خواهد شد. در پژوهش حاضر، عوامل مؤثر در جذب مولیبدن بر روی بستر آلومینا شامل مقدار جاذب، حجم و سرعت جریان محلول ورودی و غلظت مولیبدن آن، بهینهسازی شده و در نهایت راندمان جذب به 99-97% رسیده است. این مقادیر برای تولید 20mg مولیبدن-99 در مقیاس صنعتی در نظر گرفته شده است.
کلیدواژهها
عنوان مقاله [English]
Optimization of molybdenum adsorption on alumina substrate for its final purification from Uranium-235 fission by indirect sublimation method
نویسندگان [English]
- M. Dayeni
- S. Shirvani Arani
- A. Bahrami Samani
- I. Dehghan
Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 11365-8486, Tehran - Iran
چکیده [English]
The product of the Molybdenum-99 purification process, obtained from Uranium-235 fission products, has a degree of purity of 90%-95%, which its present active and inactive impurities are destructive reducing the efficiency of 99mTc/99Mo generators. As an alternative to the common sublimation method, indirect sublimation could increase purity and reduce molybdenum loss. In this method, the molybdenum in the product will be absorbed by passing through the alumina column and then the dried absorbent will be sublimated. In the present study, the effective factors in molybdenum absorption such as the amount of adsorbent, and the volume and flow rate of the input solution and molybdenum were optimized. The final absorption efficiency reached 97-99%. This investigation is expected to be applied to molybdenum-99 production.
کلیدواژهها [English]
- Mo-99
- Solid phase extraction
- Sublimation
- Tc-99m
- European Commission Heath and Consumers Directorate-General, Preliminary Report on Supply of Radioisotopes for Medical use and Current Development in Nuclear Medicine. SANCO/C/3/HW D, Rev. 8, Luxembourg. 2009.
- IAEA, Technetium-99m radiopharmaceuticals manufacture of kits. Technical Report Series No. 466. (IAEA, Vienna, 2008).
- Saha G.B. Fundamentals of Nuclear Pharmacy. 6th ed. (Springer Science, Business Media, New York). 2010.
- Pillai M.R, Dash A, Knapp Jr F.F. Sustained availability of 99mTc: possible paths forward. J. Nucl. Med. 2013;54:313.
- Lee S.K, Beyer G.J, Lee J.S. Development of industrial-scale fission 99Mo production process using low enriched uranium target. Nucl Eng Technol. 2016;48:613.
- Kotschkov Y, Pozdeyev V.V, Krascheninnikov A.I. Production of fission 99Mo with closed uranium cycle at the nuclear reactor WWR-Ts. Radio Khimiya. 2012;54:173.
- Stang L.G. Manual of isotope production processes in use at Brookhaven National Laboratory, Brookhaven National Laboratory. (Brookhaven National Laboratory, Upton, New York. 1964).
- International Atomic Energy Agency (IAEA). Non-HEU production technologies for molybdenum-99 and technetium-99m. IAEA Nuclear Energy Series. No. NF-T-5.4, IAEA. Vienna (Austria). 2013.
- Tabasi M, Bahrami Samani A, Shirvani Arani S, Ghannadi Maragheh M, Mohammadi A. Assessment of Mo-99 radioisotope supply chain using LEU in Iran. J. Nucl. Sci. Technol. 2021;42(3):104.
- Muenze R, Beyer G.J, Ross R, Wagner G, Novotny D, Franke E, Jehangir M, Pervez S, Mushtaq A. The Fission-Based 99Mo Production Process ROMOL-99 and Its Application to PINSTECH Islamabad. Sci. Technol. Nucl. 932546 (2013).
- Sameh A. Production cycle for large scale fission Mo-99 Separation by the processing of irradiated LEU uranium silicide fuel element targets. Sci. Technol. Nucl. 704846 (2013).
- Pretorius C.J, Pienaar A.D, Crouse P.L, Niemand H.F. Sublimation kinetics of zirconium tetrafluoride. Adv. Mat. Res. 2014;1019:398.
- Sameth A.H, Etlingen A, Buerck J, U.S. Patent No. 4981658. 1991 (1 Jan).
- Landini L, Araújo S.G, Forbicini C.A.L.G.O. International Nuclear Atlantic Conference. (Santos, SP, Brazil) 2019;2352-2357.
- Damasceno M.O, Da Silva F.M.A, Dos Santos J.L, Dias R.R, Forbicini C.A. Study of new routes for purification of fission 99Mo. Braz. J. Radiat. Sci. 2021;221:1.
- Dittrich S. Review Article History and Actual State of Non-HEU Fission-Based Mo-99 Production with Low-Performance Research Reactors. Sci. Technol. Nucl. 514894 (2013).
- Dias Filho N.L. In: Adsorption at Silica, Alumina, and Related Surfaces. P. Somasundaran Encyclopedia of Surface and Colloid Science. 2nd ed.) Taylor & Francis, New York). 2006;229-241.
- Tamura H, Katayama N, Furuichi R. Modeling of Ion-Exchange Reactions on Metal Oxides with the Frumkin Isotherm. 1. Acid−Base and Charge Characteristics of MnO2, TiO2, Fe3O4, and Al2O3 Surfaces and Adsorption Affinity of Alkali Metal Ions, Environ. Sci. Technol. 1996;30(4):1198.
- Rabia1 A.R, Ibrahim A.H, Zulkepli N.N. Activated alumina preparation and characterization: The review on recent advancement. E3S Web of Conferences. 2018;34:02049. doi: 10.1051/e3sconf/20183402049.
- Fujita Y, Niizeki T, Fukumitsu N, Ariga K, Yamauchi Y, Malgras V, Kaneti Y.V, Liu C.H. Mechanisms Responsible for Adsorption of Molybdate ions on Alumina for the Production of Medical Radioisotopes. Bull. Chem. Soc. Jpn. 2022;95:129.